Main thread's execution context - iphone

I need ideas on the following -
In the main thread at some point of execution say Point A(sequential logic), I need to remember the state of execution and delegate the execution of some other logic onto another thread, and let the main thread handle the UI events etc. When the delegated logic completes on the other thread then the flow of execution should continue from the point A and should recollect the entire execution context and proceed as if it never paused there.
Regards,
Sunil Phani Manne

It's hard to implement this exactly the way you're saying (for example do(things)... yield(other_thread); ...do(more_things);.
Here are a couple other options I can think of (you'd have to implement these yourself, using delegates or notifications for example; I'm just giving a basic outline of how it would work):
do(things)
[object doStuffOnOtherThreadWithCallback:^{ // block-based
do(more_things)...
}];
or...
do(things)
[object doStuffOnOtherThreadWithCallbackTarget:self // target/selector-based
selector:#selector(callbackSelector)];
}
- (void)callbackSelector {
do(more_things)...
}

One option you have is encapsulating the whole sequential logic that comes after Point A in your delegate and then execute it on the main thread when the secondary thread ends.
In other words, when you start the thread by calling, e.g.
[NSThread detachNewThreadSelector:sel toTarget:target withObject:delegate]
you can implement your target target so that it has a specific selector completion that is called at the end of sel on the main thread, like this (this is the your delegate class):
#implementation YOURDelegateClass {
.....
-(void)completion {
}
-(void)sel {
...
...
[self performSelectorOnMainThread:#selector(#"completion") withObject:self];
}
}
Of course you have many sub-options available here, like using a different call to start the background execution, etc.
The important point is that: you have to encapsulate in a selector all the logic that comes after Point A, and that you have to schedule the execution of this selector on the main thread, in order to get back to your context (although your context will have changed in the meantime because you will also have updated the UI).
EDIT:
Having to schedule the execution on the main thread defeats blocks from being suitable for this kind of callback. On the other side, block have the advantage that they in some limited sense give you access to the same lexical context in which the block was defined (which is roughly what you call context).
A workaround for this could be the following. Before detaching the new thread, store in a delegate the block you would like to execute at completion:
typedef void(^CustomBlock)(void);
#property (nonatomic, copy) CustomBlock customBlock;
....
int a = ...
delegate.customBlock = ^{
NSLog(#"hello %d.....", a);
}
[NSThread detachNewThreadSelector:sel...
....
-(void)completion {
[self customBlock];
}
Of course, you only get the context preservation that is guaranteed to you by block. But here you hit against a limit of the language.
If you need more context preservation, then the only possibility is encapsulating that context in your delegate class ivars.

One thing is for sure. There, most probably, isn't any direct feature in Cocoa that does that. Since you're saying that you can't duplicate the resources onto the new thread (for a very good reason), I am going to suggest that you make use of NSUndoManager. For every change you make in the thread, push an undo operation for that change onto the undo manager. At the end of the thread, execute all the undo operations in the undo manager object. This should, if done correctly, restore your state. Now, since the idea is untested, there could be a chance that not all actions can be undone. You will have to check that out first.

Related

Dispatch Queues - Nesting, Optimisation & Control

Can I have your advice on the approved approach?
I have four processes that need to run sequentially:
calculateProcess1()
calculateProcess2()
calculateProcess3()
calculateProcess4()
These calculate data and update progress bars (circular) and other screen literals using dispatch queues to make the UI update.
Run them as is and lo and behold they all fire off simultaneously (what a surprise!).
How do I make the top level calls run in sequence (as above) and do I need to make changes to my DispatchQueues in the processes for updating the literals, e.g.:
DispatchQueue.main.sync {
let progressPercentage = (day*100/365)
self.progressLabel.text = String(Int(progressPercentage))+"%"
}
The initiating processes (calculateProcess1-4()) need to run from main. Should this be in ViewDidLoad, a button action or what is the most secure method?
A one approach would be to use Operation and OperationQueue. Setting maxConcurrentOperationCount: Int to 1 on the OperationQueue, will force operations to be performed in a sequence, one after another.
(Previously called NSOperation and NSOperationQueue)
This blogpost can be helpful: https://nshipster.com/nsoperation/
And of course awesome WWDC15 session: Advanced NSOperations
1- Don't sync in main thread as it'll cause a runtime crash , it should be async
DispatchQueue.main.sync {
2-
Should this be in ViewDidLoad, a button action or what is the most secure method?
it's up to you there is no thing related to security here , implement it as your UX
3- to run them in dequence create a custom Queue then dispatch them in it as it' ll run serially if the code inside all these methods run in the same thread of the queue meaning you don't internally dispatch inside another queue , you can also use DispatchGroup to be notified when all are done
If you want to keep it simple you can provide callback blocks to your calculateProcess methods and simply nest them.
calculateProcess1() {
calculateProcess2() {
calculateProcess3() {
calculateProcess4() {}
}
}
}
Should this be in ViewDidLoad, a button action or what is the most
secure method?
viewDidLoad is probably what you want. Keep in mind if you instantiate a new viewController of the same type and show it, it will happen again, once, for that new controller as well. Also, if you are doing anything with view frames, those are not guaranteed to be laid out in viewDidLoad, but if you are simply updating text then it should be fine.

Wait for a value to change and then perform a block

I have the following Method:
-(void) waitForStatusChangeAndPerformBlock:(MyBlockType)successBlock;
This is what the method should do:
Check if some status has the right value
If it does invoke the block successBlock
If not wait for the status to change to a given value and then invoke the block successBlock
I thought about KVO to check if the value has changed, but then I would have to store the block in some instance variable, or worse, an array, and I would loose the context of the current method call. So what I really want is something like this:
-(void) waitForStatusChangeAndPerformBlock:(MyBlockType)successBlock{
if(self.status == kDesiredStatus){
successBlock;
} else {
[TheMagicDispatchWaitUntil:(self.status == kDesiredStatus) andThenDoThis:^{
successBlock;
}];
}
}
Is there a way to achieve this without KVO or other helper methods?
If you want a theead to wait on an event - a message, timer, or whatever, one really nice way to do that is to use a Concurrent NSOperation. Those objects run on a separate thread, but have a runLoop so they can block in a the "normal" fashion inside the runloop callback waiting for something to happen.
That said, these do take a bit of finesse to get working. I have a demo project on gthub that lets you explore concurrent NSOperations (and there are others too).
Another nice way to block until something has done (on a thread) is to use "dispatch_wait()", which waits on all blocks that have been queued belonging to a group. This technique is pretty easy to pick up - you create a dispatch group and use the standard queues or create your own queue, then queue blocks using the dispatch_group functions. Once all are queued, you then dispatch_wait(forever) for the blocks to finish.
If you are doing just a simple routine and you don't have to call this method often, why don't you just use a while statement?
while (self.status != kDesiredStatus);
do {TheMagicDispatch}
succesBlock;

iOS : Best way to organise multithreading

Guys I need some help to architect my multithreading in iOS.
I'm using ARC in my code.
So basically I need following,
In my main thread nstimer fire some method which should be executed in a separate thread, that thread does some calculation and puts data into some ivar, and another thread should read data from that ivar and do some other calculation, i.e. if there is no data the second thread should wait until there is any.
So basically I would like to hear some advice which technology is the best choice for my task, to use cocoa thread (NSThread), GCD or Operation queues.
Also can someone please provide me with some pseudo code on aspects of mutual blocking/synchronization between two threads.
Since you are saying that some calculations should wait for other calculations to finish, I would say that you should have a look at NSOperation and set dependencies for the different operations (using addDependency).
Unless you left something our of your problem description, that is a perfect fit for GCD/block combo. In fact, I wouldn't even use a NSTimer (GCD provides a better alternative - see dispatch_source_create for example of creating GCD based timer), but that's your call, and not what the question asked. Anyway, with GCD...
- (void)handleTimer:(NSTimer *)timer {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0), ^{
__block id someObject;
// Do work... manipulate someObject in some manner...
// When done, invoke other thread... main thread in this case
dispatch_async(dispatch_get_main_queue(), ^{
// This code is running in a different thread, and can use someObject directly
});
});
}

Grand Central Dispatch (GCD) vs. performSelector - need a better explanation

I've used both GCD and performSelectorOnMainThread:waitUntilDone in my apps, and tend to think of them as interchangeable--that is, performSelectorOnMainThread:waitUntilDone is an Obj-C wrapper to the GCD C syntax. I've been thinking of these two commands as equivalent:
dispatch_sync(dispatch_get_main_queue(), ^{ [self doit:YES]; });
[self performSelectorOnMainThread:#selector(doit:) withObject:YES waitUntilDone:YES];
Am I incorrect? That is, is there a difference of the performSelector* commands versus the GCD ones? I've read a lot of documentation on them, but have yet to see a definitive answer.
As Jacob points out, while they may appear the same, they are different things. In fact, there's a significant difference in the way that they handle sending actions to the main thread if you're already running on the main thread.
I ran into this recently, where I had a common method that sometimes was run from something on the main thread, sometimes not. In order to protect certain UI updates, I had been using -performSelectorOnMainThread: for them with no problems.
When I switched over to using dispatch_sync on the main queue, the application would deadlock whenever this method was run on the main queue. Reading the documentation on dispatch_sync, we see:
Calling this function and targeting
the current queue results in deadlock.
where for -performSelectorOnMainThread: we see
wait
A Boolean that specifies whether the
current thread blocks until after the
specified selector is performed on the
receiver on the main thread. Specify
YES to block this thread; otherwise,
specify NO to have this method return
immediately.
If the current thread is also the main
thread, and you specify YES for this
parameter, the message is delivered
and processed immediately.
I still prefer the elegance of GCD, the better compile-time checking it provides, and its greater flexibility regarding arguments, etc., so I made this little helper function to prevent deadlocks:
void runOnMainQueueWithoutDeadlocking(void (^block)(void))
{
if ([NSThread isMainThread])
{
block();
}
else
{
dispatch_sync(dispatch_get_main_queue(), block);
}
}
Update: In response to Dave Dribin pointing out the caveats section ondispatch_get_current_queue(), I've changed to using [NSThread isMainThread] in the above code.
I then use
runOnMainQueueWithoutDeadlocking(^{
//Do stuff
});
to perform the actions I need to secure on the main thread, without worrying about what thread the original method was executed on.
performSelectorOnMainThread: does not use GCD to send messages to objects on the main thread.
Here's how the documentation says the method is implemented:
- (void) performSelectorOnMainThread:(SEL) selector withObject:(id) obj waitUntilDone:(BOOL) wait {
[[NSRunLoop mainRunLoop] performSelector:selector target:self withObject:obj order:1 modes: NSRunLoopCommonModes];
}
And on performSelector:target:withObject:order:modes:, the documentation states:
This method sets up a timer to perform the aSelector message on the current thread’s run loop at the start of the next run loop iteration. The timer is configured to run in the modes specified by the modes parameter. When the timer fires, the thread attempts to dequeue the message from the run loop and perform the selector. It succeeds if the run loop is running and in one of the specified modes; otherwise, the timer waits until the run loop is in one of those modes.
GCD's way is suppose to be more efficient and easier to handle and is only available in iOS4 onwards whereas performSelector is supported in the older and newer iOS.

Threading, priorities, and abandonment

I have recently become thread curious on iOS. Please point me in the direction you would take, to achieve (if possible) the following on modern iOS devices... thank you!
The user is typing in text, say a word every few seconds.
From time to time I want to launch DifficultProcess to do some semantic processing. In short, I guess I need to be able to do four things:
launch DifficultProcess from main
if DifficultProcess completes, get a message back from it to the same main
abandon, get rid of, DifficultProcess if I want to, from main
and finally the priority question: DifficultProcess must have much lower priority than main or user input, I want DifficultProcess to have really really looow priority; is that even possible?
What, essentially, are the calls one uses for A, B, C in modern (2011) (late January) iOS? I don't care about Dad's methods! And is "D" even possible in any way?
I guess those are the four ideas!
So in particular I want to send a message to, in other words call a routine in, the running background process (in that way, one could kill off the running background process if desired, or perhaps change it's mode of operation etc).
(For anyone born before 1997, you will recognise that as a typical "speculative processing" paradigm.)
Thanks for pointers for anyone who can be bothered on this!
I would recommend using NSOperation and NSOperationQueue to manage background activity that you need to be able to cancel arbitrarily.
NSOperation's -cancel and NSOperationQueue's -cancelAllOperations are the methods to look at.
To get messages back from the background to the main thread, the dispatch_async-to-main-thread-queue technique is fine. You can combine this with a delegate protocol for your NSOperation to codify the messages you want to send back.
E.g.
#protocol MyOperationDelegate
- (void) operationStarted:(MyOperation *)operation;
- (void) makingProgressOnItem:(id)anItem otherInterestingItem:(NSDictionary *)otherItem remainingCount:(NSUInteger)count;
- (void) operationWillFinish:(MyOperation *)operation;
#end
#interface MyOperation
id <MyOperationDelegate> delegate;
#end
#implementation MyOperation
...
- (void) cancel
{
[super cancel];
// Tell the delegate we're about to finish (due to cancellation).
dispatch_sync (dispatch_get_main_queue(), ^{
[self.delegate operationWillFinish:self];
});
}
- (void) main
{
// Check for cancellation
if (self.isCancelled) return;
// Starting
dispatch_sync (dispatch_get_main_queue(), ^{
[self.delegate operationStarted:self];
});
if (self.isCancelled) return; // Another cancel check
// Send async progress messages periodically while doing some work
while (workNotDone)
{
// Do some work ...
dispatch_async (dispatch_get_main_queue(), ^{
[self.delegate makingProgressOnItem:foo otherInterestingItem:bar remainingCount:baz];
});
if (self.isCancelled) return;
}
// About to finish
if (!self.isCancelled) {
dispatch_sync (dispatch_get_main_queue(), ^{
[self.delegate operationWillFinish:self];
});
}
}
#end
KVO is no good for interthread communication; the observation is received on the thread that originates the key value change. So, if your background thread changes a value, your background thread is going to receive the KVO about it. Probably not what you want.
Grandpa's -performSelectorOnMainThread:withObject:waitUntilDone: continues to be a fine way to get messages back to the main thread. The limitation is that your messages can only access one object-based argument. The dispatch_async to the main thread doesn't have this limitation.
If you want to fire off an asynchronous (or synchronous) NSNotification's from a background thread to the main thread, you need to use -performSelectorOnMainThread.
NSNotification *note = [NSNotification notificationWithName:FinishedABunchOfWorkNotification object:self userInfo:nil];
[[NSNotificationCenter defaultCenter] performSelectorOnMainThread:#selector(postNotification:) withObject:note waitUntilDone:YES];
I would suggest using dispatch_async to the global low priority queue (dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0)).
Cancellation is trickier though. There's no good general mechanism for canceling background work that I'm aware of aside from "chunking" it and checking a flag each chunk
To get messages back just dispatch_async back to the main queue. If you squint just right you can think of dispatch_async as "send message" in an actor model.
(edit) if you need serialization of stuff in the background, make a private queue and set its target to the global low priority one, iirc.
At the risk of quoting Dad's method (it has been around since iPhone version 2) I use
- (void)performSelectorInBackground:(SEL)aSelector withObject:(id)arg
It's easy and foolproof as long as you remember that you must create a new autorelease pool in the method you pass as selector, and drain it at the end of the method. Apart from that do whatever you like - EXCEPT touch UIKit. It isn't thread-safe so any UI changes must be done through
- (void)performSelectorOnMainThread:(SEL)aSelector withObject:(id)arg waitUntilDone:(BOOL)wait
or KVO triggers. Key Value Observing would be a good way for your background thread to communicate to your main thread that the work is done.
- (void)myBackgroundThreadMethod {
NSAutoreleasePool *threadPool = [[NSAutoreleasePool alloc] init];
// my time-consuming processing here
[threadPool drain];
}
For more precise control of threads you need to look at NSThread. Threading Programming Guide lays it all out in detail - if you create a thread through NSThread then you have control over when the thread is started. The document does recommend leaving the thread alone and just letting it terminate - but shows how you can terminate it. One way is - (void)performSelector:(SEL)aSelector onThread:(NSThread *)thr withObject:(id)arg waitUntilDone:(BOOL)wait
NSThread docs also say "leave priority alone". You can set thread priority with
+ (BOOL)setThreadPriority:(double)priority
but I've never known it to be necessary, the scheduler is smart enough to maintain UI responsiveness.