Is NoSQL 100% ACID 100% of the time? - nosql

Quoting: http://gigaom.com/cloud/facebook-trapped-in-mysql-fate-worse-than-death/
There have been various attempts to
overcome SQL’s performance and
scalability problems, including the
buzzworthy NoSQL movement that burst
onto the scene a couple of years ago.
However, it was quickly discovered
that while NoSQL might be faster and
scale better, it did so at the expense
of ACID consistency.
Wait - am I reading that wrongly?
Does it mean that if I use NoSQL, we can expect transactions to be corrupted (albeit I daresay at a very low percentage)?

It's actually true and yet also a bit false. It's not about corruption it's about seeing something different during a (limited) period.
The real thing here is the CAP theorem which simply states you can only choose two of the following three:
Consistency (all nodes see the same data at the same time)
Availability (a guarantee that every request receives a response about whether it was successful or failed)
Partition
tolerance (the system continues to operate despite arbitrary message loss)
The traditional SQL systems choose to drop "Partition tolerance" where many (not all) of the NoSQL systems choose to drop "Consistency".
More precise: They drop "Strong Consistency" and select a more relaxed Consistency model like "Eventual Consistency".
So the data will be consistent when viewed from various perspectives, just not right away.

NoSQL solutions are usually designed to overcome SQL's scale limitations. Those scale limitations are explained by the CAP theorem. Understanding CAP is key to understanding why NoSQL systems tend to drop support for ACID.
So let me explain CAP in purely intuitive terms. First, what C, A and P mean:
Consistency: From the standpoint of an external observer, each "transaction" either fully completed or is fully rolled back. For example, when making an amazon purchase the purchase confirmation, order status update, inventory reduction etc should all appear 'in sync' regardless of the internal partitioning into sub-systems
Availability: 100% of requests are completed successfully.
Partition Tolerance: Any given request can be completed even if a subset of nodes in the system are unavailable.
What do these imply from a system design standpoint? what is the tension which CAP defines?
To achieve P, we needs replicas. Lots of em! The more replicas we keep, the better the chances are that any piece of data we need will be available even if some nodes are offline. For absolute "P" we should replicate every single data item to every node in the system. (Obviously in real life we compromise on 2, 3, etc)
To achieve A, we need no single point of failure. That means that "primary/secondary" or "master/slave" replication configurations go out the window since the master/primary is a single point of failure. We need to go with multiple master configurations. To achieve absolute "A", any single replica must be able to handle reads and writes independently of the other replicas. (in reality we compromise on async, queue based, quorums, etc)
To achieve C, we need a "single version of truth" in the system. Meaning that if I write to node A and then immediately read back from node B, node B should return the up-to-date value. Obviously this can't happen in a truly distributed multi-master system.
So, what is the "correct" solution to the problem? It details really depend on your requirements, but the general approach is to loosen up some of the constraints, and to compromise on the others.
For example, to achieve a "full write consistency" guarantee in a system with n replicas, the # of reads + the # of writes must be greater or equal to n : r + w >= n. This is easy to explain with an example: if I store each item on 3 replicas, then I have a few options to guarantee consistency:
A) I can write the item to all 3 replicas and then read from any one of the 3 and be confident I'm getting the latest version B) I can write item to one of the replicas, and then read all 3 replicas and choose the last of the 3 results C) I can write to 2 out of the 3 replicas, and read from 2 out of the 3 replicas, and I am guaranteed that I'll have the latest version on one of them.
Of course, the rule above assumes that no nodes have gone down in the meantime. To ensure P + C you will need to be even more paranoid...
There are also a near-infinite number of 'implementation' hacks - for example the storage layer might fail the call if it can't write to a minimal quorum, but might continue to propagate the updates to additional nodes even after returning success. Or, it might loosen the semantic guarantees and push the responsibility of merging versioning conflicts up to the business layer (this is what Amazon's Dynamo did).
Different subsets of data can have different guarantees (ie single point of failure might be OK for critical data, or it might be OK to block on your write request until the minimal # of write replicas have successfully written the new version)
The patterns for solving the 90% case already exist, but each NoSQL solution applies them in different configurations. The patterns are things like partitioning (stable/hash-based or variable/lookup-based), redundancy and replication, in memory-caches, distributed algorithms such as map/reduce.
When you drill down into those patterns, the underlying algorithms are also fairly universal: version vectors, merckle trees, DHTs, gossip protocols, etc.

It does not mean that transactions will be corrupted. In fact, many NoSQL systems do not use transactions at all! Some NoSQL systems may sometimes lose records (e.g. MongoDB when you do "fire and forget" inserts rather than "safe" ones), but often this is a design choice, not something you're stuck with.
If you need true transactional semantics (perhaps you are building a bank accounting application), use a database that supports them.

First, asking if NoSql is 100% ACID 100% of the time is a bit of a meaningless question. It's like asking "Are dogs 100% protective 100% of the time?" There are some dogs that are protective (or can be trained to be) such as German Shepherds or Doberman Pincers. There are other dogs that could care less about protecting anyone.
NoSql is the label of a movement, and not a specific technology. There are several different types of NoSql databases. There are document stores, such as MongoDb. There are graph databases such as Neo4j. There are key-value stores such as cassandra.
Each of these serve a different purpose. I've worked with a proprietary database that could be classified as a NoSql database, it's not 100% ACID, but it doesn't need to be. It's a write once, read many database. I think it gets built once a quarter (or once a month?) and then is read 1000s of time a day.

There is a lot of different NoSQL store types and implementations. Every of them can solve trade-offs between consistency and performance differently. The best you can get is a tunable framework.
Also the sentence "it was quickly discovered" from you citation is plainly stupid, this is no surprising discovery but a proven fact with deep theoretical roots.

In general, it's not that any given update would fail to save or get corrupted -- these are obviously going to be a very big issue for any database.
Where they fail on ACID is in data retrieval.
Consider a NoSQL DB which is replicated across numerous servers to allow high-speed access for a busy site.
And lets say the site owners update an article on the site with some new information.
In a typical NoSQL database in this scenario, the update would immediately only affect one of the nodes. Any queries made to the site on the other nodes would not reflect the change right away. In fact, as the data is replicated across the site, different users may be given different content despite querying at the same time. The data could take some time to propagate across all the nodes.
Conversely, in a transactional ACID compliant SQL database, the DB would have to be sure that all nodes had completed the update before any of them could be allowed to serve the new data.
This allows the site to retain high performance and page caching by sacrificing the guarantee that any given page will be absolutely up to date at an given moment.
In fact, if you consider it like this, the DNS system can be considered to be a specialised NoSQL database. If a domain name is updated in DNS, it can take several days for the new data to propagate throughout the internet (depending on TTL configuration).
All this makes NoSQL a useful tool for data such as web site content, where it doesn't necessarily matter that a page isn't instantly up-to-date and consistent as long as it is reasonably up-to-date.
On the other hand, though, it does mean that it would be a very bad idea to use a NoSQL database for a system which does require consistency and up-to-date accuracy. An order processing system or a banking system would definitely not be a good place for your typical NoSQL database engine.

NOSQL is not about corrupted data. It is about viewing at your data from a different perspective. It provides some interesting leverage points, which enable for much easier scalability story, and often usability too. However, you have to look at your data differently, and program your application accordingly (eg, embrace consequences of BASE instead of ACID). Most NOSQL solutions prevent you from making decisions which could make your database hard to scale.
NOSQL is not for everything, but ACID is not the most important factor from end-user perspective. It is just us developers who cannot imagine world without ACID guarantees.

You are reading that correctly. If you have the AP of CAP, your data will be inconsistent. The more users, the more inconsistent. As having many users is the main reason why you scale, don't expect the inconsistencies to be rare. You've already seen data pop in and out of Facebook. Imagine what that would do to Amazon.com stock inventory figures if you left out ACID. Eventual consistency is merely a nice way to say that you don't have consistency but you should write and application where you don't need it. Some types of games and social network application does not need consistency. There are even line-of-business systems that don't need it, but those are quite rare. When your client calls when the wrong amount of money is on an account or when an angry poker player didn't get his winnings, the answer should not be that this is how your software was designed.
The right tool for the right job. If you have less than a few million transactions per second, you should use a consistent NewSQL or NoSQL database such as VoltDb (non concurrent Java applications) or Starcounter (concurrent .NET applications). There is just no need to give up ACID these days.

Related

Consistency for read from distributed databases

I have a set of databases, distributed across multiple locations in the network and for ex. one client that needs to store some data in that databases.
I need to make sure my data will always be stored.
I can't organize a replica set with sync/async replication as it will make me to connect to one master which is a point of failure, so I send data from the client to all databases I know. Apparently, one database can fail to store, so I am relying on other databases writes. In the end I get different data sets stored in DB's though these sets are overlapping. (Ex. DB1 -> [1, 2, 3], DB2 -> [1, 3], DB3 -> [2,3,4])
How can get consistent data when reading from these DBs? What techniques should I apply on the client that writes data and a client that reads to be able to merge data sets successfully (getting on reader [1,2,3,4])?
What you're asking is basically an entire branch of computer science. It is very much a non-trivial problem and you will find that a surprising number of things are impossible.
Also note that simply saying "consistent" data is not a sufficient definition. There are all sorts of levels of consistency (read-your-own-writes, reads-follow-writes, monotonic read, linearizable, causal, etc.) I think you likely mean (in a very loose sense): consistency similar to what you get when you use just one database.
To answer your question directly, you want to decide on a read quorum size and a write quorum size. These sizes must be selected such that reads and writes will overlap by at least one database instance. If you want to optimize for write latency, use a smaller write quorum and do the opposite if you want to optimize for read latency.
A more detailed exposition of overlapping read/write quorums can be found in Weighted Voting for Replicated Data. This is considered a seminal work in the field of replication.
Also be careful around the behavior of your overlapping quorums when adding or removing a database instance. It sounds like you have a relatively static topology, but if that is not the case, then an entirely different set of choices need to be made.
Lastly - and here's the real kick in the teeth - what I have described doesn't actually give you consistency (by any definition) in some cases (I like Daniel Abadi's explanation of when andy why), but for many systems it gives you good enough consistency. It's up to you to decide exactly what level of consistency you need.
There are two-way/three-way replication software that do not require a "master".
You can also use transaction log based replications.
What and how you can use will depend on the database product you use.
HTH

Eventual consistency in plain English

I often hear about eventual consistency in different speeches about NoSQL, data grids etc.
It seems that definition of eventual consistency varies in many sources (and maybe even depends on a concrete data storage).
Can anyone give a simple explanation what Eventual Consistency is in general terms, not related to any concrete data storage?
Eventual consistency:
I watch the weather report and learn that it's going to rain tomorrow.
I tell you that it's going to rain tomorrow.
Your neighbor tells his wife that it's going to be sunny tomorrow.
You tell your neighbor that it is going to rain tomorrow.
Eventually, all of the servers (you, me, your neighbor) know the truth (that it's going to rain tomorrow), but in the meantime the client (his wife) came away thinking it is going to be sunny, even though she asked after one or more of the servers (you and me) had a more up-to-date value.
As opposed to Strict Consistency / ACID compliance:
Your bank balance is $50.
You deposit $100.
Your bank balance, queried from any ATM anywhere, is $150.
Your daughter withdraws $40 with your ATM card.
Your bank balance, queried from any ATM anywhere, is $110.
At no time can your balance reflect anything other than the actual sum of all of the transactions made on your account to that exact moment.
The reason why so many NoSQL systems have eventual consistency is that virtually all of them are designed to be distributed, and with fully distributed systems there is super-linear overhead to maintaining strict consistency (meaning you can only scale so far before things start to slow down, and when they do you need to throw exponentially more hardware at the problem to keep scaling).
Eventual consistency:
Your data is replicated on multiple servers
Your clients can access any of the servers to retrieve the data
Someone writes a piece of data to one of the servers, but it wasn't yet copied to the rest
A client accesses the server with the data, and gets the most up-to-date copy
A different client (or even the same client) accesses a different server (one which didn't get the new copy yet), and gets the old copy
Basically, because it takes time to replicate the data across multiple servers, requests to read the data might go to a server with a new copy, and then go to a server with an old copy. The term "eventual" means that eventually the data will be replicated to all the servers, and thus they will all have the up-to-date copy.
Eventual consistency is a must if you want low latency reads, since the responding server must return its own copy of the data, and doesn't have time to consult other servers and reach a mutual agreement on the content of the data. I wrote a blog post explaining this in more detail.
Think you have an application and its replica. Then you have to add new data item to the application.
Then application synchronises the data to other replica show in below
Meanwhile new client going to get data from one replica that not update yet. In that case he cant get correct up date data. Because synchronisation get some time. In that case it haven't eventually consistency
Problem is how can we eventually consistency?
For that we use mediator application to update / create / delete data and use direct querying to read data. that help to make eventually consistency
When an application makes a change to a data item on one machine, that change has to be propagated to the other replicas. Since the change propagation is not instantaneous, there’s an interval of time during which some of the copies will have the most recent change, but others won’t. In other words, the copies will be mutually inconsistent. However, the change will eventually be propagated to all the copies, and hence the term “eventual consistency”. The term eventual consistency is simply an acknowledgement that there is an unbounded delay in propagating a change made on one machine to all the other copies. Eventual consistency is not meaningful or relevant in centralized (single copy) systems since there’s no need for propagation.
source: http://www.oracle.com/technetwork/products/nosqldb/documentation/consistency-explained-1659908.pdf
Eventual consistency means changes take time to propagate and the data might not be in the same state after every action, even for identical actions or transformations of the data. This can cause very bad things to happen when people don’t know what they are doing when interacting with such a system.
Please don’t implement business critical document data stores until you understand this concept well. Screwing up a document data store implementation is much harder to fix than a relational model because the fundamental things that are going to be screwed up simply cannot be fixed as the things that are required to fix it are just not present in the ecosystem. Refactoring the data of an inflight store is also much harder than the simple ETL transformations of a RDBMS.
Not all document stores are created equal. Some these days (MongoDB) do support transactions of a sort, but migrating datastores is likely comparable to the expense of re-implementation.
WARNING: Developers and even architects who do not know or understand the technology of a document data store and are afraid to admit that for fear of losing their jobs but have been classically trained in RDBMS and who only know ACID systems (how different can it be?) and who don’t know the technology or take the time to learn it, will miss design a document data store. They may also try and use it as a RDBMS or for things like caching. They will break down what should be atomic transactions which should operate on an entire document into “relational” pieces forgetting that replication and latency are things, or worse yet, dragging third party systems into a “transaction”. They’ll do this so their RDBMS can mirror their data lake, without regard to if it will work or not, and with no testing, because they know what they are doing. Then they will act surprised when complex objects stored in separate documents like “orders” have less “order items” than expected, or maybe none at all. But it won’t happen often, or often enough so they’ll just march forward. They may not even hit the problem in development. Then, rather than redesign things, they will throw “delays” and “retries” and “checks” in to fake a relational data model, which won’t work, but will add additional complexity for no benefit. But its too late now - the thing has been deployed and now the business is running on it. Eventually, the entire system will be thrown out and the department will be outsourced and someone else will maintain it. It still won’t work correctly, but they can fail less expensively than the current failure.
In simple English, we can say: Although your system may be in inconsistent states, the aim is always to reach consistency at some point for each piece of data.
Eventual consistency is more like a spectrum. On one end you have strong consistency and on other you have eventual consistency. In between there are levels like Snapshot, read my writes, bounded staleness. Doug Terry has a beautiful explanation in his paper on eventual consistency thru baseball
.
As per me eventual consistency is basically toleration to random data in random order every time you read from a data store. Anything better than that is a stronger consistency model. For example, a snapshot has stale data but will return same data if read again so it is predictable. Sometimes application can tolerate data which is stale for a given amount of time beyond which it demands consistent data.
If you look at meaning of consistency it relates more to uniformity or lack of deviation. So in non computer system terms it could mean toleration for unexpected variations. It could be very well explained thru ATM. An ATM could be offline hence divergent from account balance from core systems. However there is a toleration for showing different balances for a window of time. Once the ATM comes online, it can sync with core systems and reflect same balance. So an ATM could be said to be eventually consistent.
Eventual consistency guarantees consistency throughout the system, but not at all times. There is an inconsistency window, where a node might not have the latest value, but will still return a valid response when queried, even if that response will not be accurate. Cassandra has a ring system where your data is split up into different nodes:
Any of those nodes can act as the primary interface point for your application. So there is no single point of failure because any of those nodes can serve as your primary API point. But there is a trade-off here. Because any node can be primary, that data needs to be replicated amongst all of these nodes in order to stay up to date. So all of the other nodes needs to know what is where at all times and that means that as a trade-off for this architecture, we have eventual consistency. Because it takes time for that data to propagate throughout the ring, through every node in your system. So, as the data is written, it might be a little bit of time before you can actually read that data back you just wrote. Maybe data is written to one node, but you are reading it from a different node and that written data have not made it to that other node yet.
Let's say you back up your photos on your phone to the cloud every Sunday. If you check your photos on Friday on your cloud, you are not going to see the photos that were taken between Monday-Friday. You are still getting a response but not an updated response but if you check your cloud on Sunday night you will see all of your photos. So your data across phone and cloud services eventually reach consistency.

SQL vs NoSQL for an inventory management system

I am developing a JAVA based web application. The primary aim is to have inventory for products being sold on multiple websites called channels. We will act as manager for all these channels.
What we need is:
Queues to manage inventory updates for each channel.
Inventory table which has a correct snapshot of allocation on each channel.
Keeping Session Ids and other fast access data in a cache.
Providing a facebook like dashboard(XMPP) to keep the seller updated asap.
The solutions i am looking at are postgres(our db till now in a synchronous replication mode), NoSQL solutions like Cassandra, Redis, CouchDB and MongoDB.
My constraints are:
Inventory updates cannot be lost.
Job Queues should be executed in order and preferably never lost.
Easy/Fast development and future maintenance.
I am open to any suggestions. thanks in advance.
Queues to manage inventory updates for each channel.
This is not necessarily a database issue. You might be better off looking at a messaging system(e.g. RabbitMQ)
Inventory table which has a correct snapshot of allocation on each channel.
Keeping Session Ids and other fast access data in a cache.
session data should probably be put in a separate database more suitable for the task(e.g. memcached, redis, etc)
There is no one-size-fits-all DB
Providing a facebook like dashboard(XMPP) to keep the seller updated asap.
My constraints are:
1. Inventory updates cannot be lost.
There are 3 ways to answer this question:
This feature must be provided by your application. The database can guarantee that a bad record is rejected and rolled back, but not guarantee that every query will get entered.
The app will have to be smart enough to recognize when an error happens and try again.
some DBs store records in memory and then flush memory to disk peridocally, this could lead to data loss in the case of a power failure. (e.g Mongo works this way by default unless you enable journaling. CouchDB always appends to the records(even a delete is a flag appended to the record so data loss is extremely difficult))
Some DBs are designed to be extremely reliable, even if an earthquake, hurricane or other natural disaster strikes, they remain durable. these include Cassandra, Hbase, Riak, Hadoop, etc
Which type of durability are your referring to?
Job Queues should be executed in order and preferably never lost.
Most noSQL solutions prefer to run in parallel. so you have two options here.
1. use a DB that locks the entire table for every query(slower)
2. build your app to be smarter or evented(client side sequential queuing)
Easy/Fast development and future maintenance.
generally, you will find that SQL is faster to develop at first, but changes can be harder to implement
noSQL may require a little more planning, but is easier to do ad hoc queries or schema changes.
The questions you probably need to ask yourself are more like:
"Will I need to have intense queries or deep analysis that a Map/Reduce is better suited to?"
"will I need to my change my schema frequently?
"is my data highly relational? in what way?"
"does the vendor behind my chosen DB have enough experience to help me when I need it?"
"will I need special feature such as GeoSpatial indexing, full text search, etc?"
"how close to realtime will I need my data? will it hurt if I don't see the latest records show up in my queries until 1sec later? what level of latency is acceptable?"
"what do I really need in terms of fail-over"
"how big is my data? will it fit in memory? will it fit on one computer? is each individual record large or small?
"how often will my data change? is this an archive?"
If you are going to have multiple customers(channels?) each with their own inventory schemas, a document based DB might have it's advantages. I remember one time I looked at an ecommerce system with inventory and it had almost 235 tables!
Then again, if you have certain relational data, a SQL solution can really have some advantages too.
I can certainly see how I could build a solution using mongo, couch, riak or orientdb with the given constraints. But as for which is the best? I would try talking directly DB vendors, and maybe watch the nosql tapes
Addressing your constraints:
Most NoSQL solutions give you a configurable tradeoff of consistency vs. performance. In MongoDB, for instance, you can decide how durable a write should be. If you want to, you can force the write to be fsync'ed on all your replica set servers. On the other extreme, you can choose to send the command and don't even wait for the server's response.
Executing job queues in order seems to be an application code issue. I'd say a timestamp in the db and an order by type of query should do for most applications. If you have multiple application servers and your queues need to be perfect, you'd have to use a truly distributed algorithm that provides ordering, but that is not a typical requirement, and it's very tricky indeed.
We've been using MongoDB for some time now, and I'm convinced this gives your app development speed a real boost. There's no big difference in maintenance, maintaining data is a pain either way. Not having a schema gives you added flexibility (lazy migrations), but it's more elaborate and requires some care.
In summary, I'd say you can do it both ways. The NoSQL is more code driven, and transactions and relational integrity are mostly managed by your code. If you're uncomfortable with that, go for a relational DB.
However, if you're data grows huge, you'll have to code some of this logic manually because you probably wouldn't want to do real-time joins on a 10B row database. Still, you can implement that with SQL as well.
A good way to find the boundary for different databases is to consider what you can cache. Data that can be cached and reconstructed at any time are a great way to start introducing a new layer, because there's no big risks there. Also, cached data usually doesn't keep any relations so you're not sacrificing any consistency here.
NoSQL is not correct for this application.
I mean, you can use it sure, but you will end up re-implementing a lot of what SQL offers for you. For example I see a lot of relations there. You also want ACID (although some NoSQL solutions do offer that).
There is no reason you can't use both - keep relational data in relational databases, and non-relational data in key/value stores.

Example of a task that a NoSQL database can't handle (if any)

I would like to test the NoSQL world. This is just curiosity, not an absolute need (yet).
I have read a few things about the differences between SQL and NoSQL databases. I'm convinced about the potential advantages, but I'm a little worried about cases where NoSQL is not applicable. If I understand NoSQL databases essentially miss ACID properties.
Can someone give an example of some real world operation (for example an e-commerce site, or a scientific application, or...) that an ACID relational database can handle but where a NoSQL database could fail miserably, either systematically with some kind of race condition or because of a power outage, etc ?
The perfect example will be something where there can't be any workaround without modifying the database engine. Examples where a NoSQL database just performs poorly will eventually be another question, but here I would like to see when theoretically we just can't use such technology.
Maybe finding such an example is database specific. If this is the case, let's take MongoDB to represent the NoSQL world.
Edit:
to clarify this question I don't want a debate about which kind of database is better for certain cases. I want to know if this technology can be an absolute dead-end in some cases because no matter how hard we try some kind of features that a SQL database provide cannot be implemented on top of nosql stores.
Since there are many nosql stores available I can accept to pick an existing nosql store as a support but what interest me most is the minimum subset of features a store should provide to be able to implement higher level features (like can transactions be implemented with a store that don't provide X...).
This question is a bit like asking what kind of program cannot be written in an imperative/functional language. Any Turing-complete language and express every program that can be solved by a Turing Maching. The question is do you as a programmer really want to write a accounting system for a fortune 500 company in non-portable machine instructions.
In the end, NoSQL can do anything SQL based engines can, the difference is you as a programmer may be responsible for logic in something Like Redis that MySQL gives you for free. SQL databases take a very conservative view of data integrity. The NoSQL movement relaxes those standards to gain better scalability, and to make tasks that are common to Web Applications easier.
MongoDB (my current preference) makes replication and sharding (horizontal scaling) easy, inserts very fast and drops the requirement for a strict scheme. In exchange users of MongoDB must code around slower queries when an index is not present, implement transactional logic in the app (perhaps with three phase commits), and we take a hit on storage efficiency.
CouchDB has similar trade-offs but also sacrifices ad-hoc queries for the ability to work with data off-line then sync with a server.
Redis and other key value stores require the programmer to write much of the index and join logic that is built in to SQL databases. In exchange an application can leverage domain knowledge about its data to make indexes and joins more efficient then the general solution the SQL would require. Redis also require all data to fit in RAM but in exchange gives performance on par with Memcache.
In the end you really can do everything MySQL or Postgres do with nothing more then the OS file system commands (after all that is how the people that wrote these database engines did it). It all comes down to what you want the data store to do for you and what you are willing to give up in return.
Good question. First a clarification. While the field of relational stores is held together by a rather solid foundation of principles, with each vendor choosing to add value in features or pricing, the non-relational (nosql) field is far more heterogeneous.
There are document stores (MongoDB, CouchDB) which are great for content management and similar situations where you have a flat set of variable attributes that you want to build around a topic. Take site-customization. Using a document store to manage custom attributes that define the way a user wants to see his/her page is well suited to the platform. Despite their marketing hype, these stores don't tend to scale into terabytes that well. It can be done, but it's not ideal. MongoDB has a lot of features found in relational databases, such as dynamic indexes (up to 40 per collection/table). CouchDB is built to be absolutely recoverable in the event of failure.
There are key/value stores (Cassandra, HBase...) that are great for highly-distributed storage. Cassandra for low-latency, HBase for higher-latency. The trick with these is that you have to define your query needs before you start putting data in. They're not efficient for dynamic queries against any attribute. For instance, if you are building a customer event logging service, you'd want to set your key on the customer's unique attribute. From there, you could push various log structures into your store and retrieve all logs by customer key on demand. It would be far more expensive, however, to try to go through the logs looking for log events where the type was "failure" unless you decided to make that your secondary key. One other thing: The last time I looked at Cassandra, you couldn't run regexp inside the M/R query. Means that, if you wanted to look for patterns in a field, you'd have to pull all instances of that field and then run it through a regexp to find the tuples you wanted.
Graph databases are very different from the two above. Relations between items(objects, tuples, elements) are fluid. They don't scale into terabytes, but that's not what they are designed for. They are great for asking questions like "hey, how many of my users lik the color green? Of those, how many live in California?" With a relational database, you would have a static structure. With a graph database (I'm oversimplifying, of course), you have attributes and objects. You connect them as makes sense, without schema enforcement.
I wouldn't put anything critical into a non-relational store. Commerce, for instance, where you want guarantees that a transaction is complete before delivering the product. You want guaranteed integrity (or at least the best chance of guaranteed integrity). If a user loses his/her site-customization settings, no big deal. If you lose a commerce transation, big deal. There may be some who disagree.
I also wouldn't put complex structures into any of the above non-relational stores. They don't do joins well at-scale. And, that's okay because it's not the way they're supposed to work. Where you might put an identity for address_type into a customer_address table in a relational system, you would want to embed the address_type information in a customer tuple stored in a document or key/value. Data efficiency is not the domain of the document or key/value store. The point is distribution and pure speed. The sacrifice is footprint.
There are other subtypes of the family of stores labeled as "nosql" that I haven't covered here. There are a ton (122 at last count) different projects focused on non-relational solutions to data problems of various types. Riak is yet another one that I keep hearing about and can't wait to try out.
And here's the trick. The big-dollar relational vendors have been watching and chances are, they're all building or planning to build their own non-relational solutions to tie in with their products. Over the next couple years, if not sooner, we'll see the movement mature, large companies buy up the best of breed and relational vendors start offering integrated solutions, for those that haven't already.
It's an extremely exciting time to work in the field of data management. You should try a few of these out. You can download Couch or Mongo and have them up and running in minutes. HBase is a bit harder.
In any case, I hope I've informed without confusing, that I have enlightened without significant bias or error.
RDBMSes are good at joins, NoSQL engines usually aren't.
NoSQL engines is good at distributed scalability, RDBMSes usually aren't.
RDBMSes are good at data validation coinstraints, NoSQL engines usually aren't.
NoSQL engines are good at flexible and schema-less approaches, RDBMSes usually aren't.
Both approaches can solve either set of problems; the difference is in efficiency.
Probably answer to your question is that mongodb can handle any task (and sql too). But in some cases better to choose mongodb, in others sql database. About advantages and disadvantages you can read here.
Also as #Dmitry said mongodb open door for easy horizontal and vertical scaling with replication & sharding.
RDBMS enforce strong consistency while most no-sql are eventual consistent. So at a given point in time when data is read from a no-sql DB it might not represent the most up-to-date copy of that data.
A common example is a bank transaction, when a user withdraw money, node A is updated with this event, if at the same time node B is queried for this user's balance, it can return an outdated balance. This can't happen in RDBMS as the consistency attribute guarantees that data is updated before it can be read.
RDBMs are really good for quickly aggregating sums, averages, etc. from tables. e.g. SELECT SUM(x) FROM y WHERE z. It's something that is surprisingly hard to do in most NoSQL databases, if you want an answer at once. Some NoSQL stores provide map/reduce as a way of solving the same thing, but it is not real time in the same way it is in the SQL world.

NoSQL and eventual consistency - real world examples [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I'm looking for good examples of NoSQL apps that portray how to work with lack of transactionality as we know it in relational databases. I'm mostly interested in write-intensive code, as for mostly read-only code this is a much easier task. I've read a number of things about NoSQL in general, about CAP theorem, eventual consistency etc. However those things tend to concentrate on the database architecture for its own sake and not on the design patterns to use with it. I do understand that it's impossible to achieve full transactionality within a distributed app. This is exactly why I would like to understand where and how requirements should be lowered in order to make the task feasable.
EDIT:
It's not that eventual consistency is my goal on it's own. For the time being I don't really see how to use NoSQL to certain things that are write-intensive. Say: I have a simplistic auction system, where there are offers. In theory the first person to accept an offer wins. In practice I would like at least to guarantee that there is only a single winner and that people get their results in the same request. It's probably not feasable. But how to solve it in practice - maybe some requests could take longer than usual, because something went wrong. Maybe some requests should be automatically refreshed. It's just an example.
Let me explain CAP in purely intuitive terms. First, what C, A and P mean:
Consistency: From the standpoint of an external observer, each
"transaction" either fully completed or is fully rolled back. For example,
when making an amazon purchase the purchase confirmation, order status
update, inventory reduction etc should all appear 'in sync'
regardless of the internal partitioning into sub-systems
Availablility: 100% of requests are completed successfully.
Partition Tolerance: Any given request can be completed even if a
subset of nodes in the system are unavailable.
What do these imply from a system design standpoint? what is the tension which CAP defines?
To achieve P, we needs replicas. Lots of em! The more replicas we keep, the better the chances are that any piece of data we need will be available even if some nodes are offline. For absolute "P" we should replicate every single data item to every node in the system. (Obviously in real life we compromise on 2, 3, etc)
To achieve A, we need no single point of failure. That means that "primary/secondary" or "master/slave" replication configurations go out the window since the master/primary is a single point of failure. We need to go with multiple master configurations. To achieve absolute "A", any single replica must be able to handle reads and writes independently of the other replicas. (in reality we compromise on async, queue based, quorums, etc)
To achieve C, we need a "single version of truth" in the system. Meaning that if I write to node A and then immediately read back from node B, node B should return the up-to-date value. Obviously this can't happen in a truly distributed multi-master system.
So, what is the solution to your question? Probably to loosen up some of the constraints, and to compromise on the others.
For example, to achieve a "full write consistency" guarantee in a system with n replicas, the # of reads + the # of writes must be greater or equal to n : r + w >= n. This is easy to explain with an example: if I store each item on 3 replicas, then I have a few options to guarantee consistency:
A) I can write the item to all 3 replicas and then read from any one of the 3 and be confident I'm getting the latest version
B) I can write item to one of the replicas, and then read all 3 replicas and choose the last of the 3 results
C) I can write to 2 out of the 3 replicas, and read from 2 out of the 3 replicas, and I am guaranteed that I'll have the latest version on one of them.
Of course, the rule above assumes that no nodes have gone down in the meantime. To ensure P + C you will need to be even more paranoid...
There are also a near-infinite number of 'implementation' hacks - for example the storage layer might fail the call if it can't write to a minimal quorum, but might continue to propagate the updates to additional nodes even after returning success. Or, it might loosen the semantic guarantees and push the responsibility of merging versioning conflicts up to the business layer (this is what Amazon's Dynamo did).
Different subsets of data can have different guarantees (ie single point of failure might be OK for critical data, or it might be OK to block on your write request until the minimal # of write replicas have successfully written the new version)
There is more to talk about, but let me know if this was helpful and if you have any followup questions, we can continue from there...
[Continued...]
The patterns for solving the 90% case already exist, but each NoSQL solution applies them in different configurations. The patterns are things like partitioning (stable/hash-based or variable/lookup-based), redundancy and replication, in memory-caches, distributed algorithms such as map/reduce.
When you drill down into those patterns, the underlying algorithms are also fairly universal: version vectors, merckle trees, DHTs, gossip protocols, etc.
The same can be said for most SQL solutions: they all implement indexes (which use b-trees under the hood), have relatively smart query optimizers which are based on known CS algorithms, all use in-memory caching to reduce disk IO. The differences are mostly in implementation, management experience, toolset support, etc
unfortunately I can't point to some central repository of wisdom which contains all you will need to know. In general, start with asking yourself what NoSQL characteristics you really need. That will guide you to choosing between a key-value store, a document store or a column store. (those are the 3 main categories of NoSQL offerings). And from there you can start comparing the various implementations.
[Updated again 4/14/2011]
OK here's the part which actually justifies the bounty..
I just found the following 120 page whitepaper on NoSQL systems. This is very close to being the "NoSQL bible" which I told you earlier doesn't exist. Read it and rejoice :-)
NoSQL Databases, Christof Strauch
There are many applications where eventual consistency is fine. Consider Twitter as a rather famous example. There's no reason that your "tweets" have to go out to all of your "followers" instantaneously. If it takes several seconds (or even minutes?) for your "tweet" to be distributed, who would even notice?
If you want non-web examples, any store-and-forward service (like email and USENET) would be require eventual consistency.
It's not impossible to get transactions or consistency in NoSQL. A lot of people define NoSQL in terms of a lack of transactions or as requiring eventual consistency at best, but this isn't accurate. There are transactional nosql products out there - consider tuple spaces, for example - that scale very well even while providing app consistency.