How does the actor model (in Akka) work when you need to perform I/O (ie. a database operation)?
It is my understanding that a blocking operation will throw an exception (and essentially ruin all concurrency due to the evented nature of Netty, which Akka uses). Hence I would have to use a Future or something similar - however I don't understand the concurrency model.
Can 1 actor be processing multiple message simultaneously?
If an actor makes a blocking call in a future (ie. future.get()) does that block only the current actor's execution; or will it prevent execution on all actors until the blocking call has completed?
If it blocks all execution, how does using a future assist concurrency (ie. wouldn't invoking blocking calls in a future still amount to creating an actor and executing the blocking call)?
What is the best way to deal with a multi-staged process (ie. read from the database; call a blocking webservice; read from the database; write to the database) where each step is dependent on the last?
The basic context is this:
I'm using a Websocket server which will maintain thousands of sessions.
Each session has some state (ie. authentication details, etc);
The Javascript client will send a JSON-RPC message to the server, which will pass it to the appropriate session actor, which will execute it and return a result.
Execution of the RPC call will involve some I/O and blocking calls.
There will be a large number of concurrent requests (each user will be making a significant amount of requests over the WebSocket connection and there will be a lot of users).
Is there a better way to achieve this?
Blocking operations do not throw exceptions in Akka. You can do blocking calls from an Actor (which you probably want to minimize, but thats another story).
no, 1 actor instance cannot.
It will not block any other actors. You can influence this by using a specific Dispatcher. Futures use the default dispatcher (the global event driven one normally) so it runs on a thread in a pool. You can choose which dispatcher you want to use for your actors (per actor, or for all). I guess if you really wanted to create a problem you might be able to pass exactly the same (thread based) dispatcher to futures and actors, but that would take some intent from your part. I guess if you have a huge number of futures blocking indefinitely and the executorservice has been configured to a fixed amount of threads, you could blow up the executorservice. So a lot of 'ifs'. a f.get blocks only if the Future has not completed yet. It will block the 'current thread' of the Actor from which you call it (if you call it from an Actor, which is not necessary by the way)
you do not necessarily have to block. you can use a callback instead of f.get. You can even compose Futures without blocking. check out talk by Viktor on 'the promising future of akka' for more details: http://skillsmatter.com/podcast/scala/talk-by-viktor-klang
I would use async communication between the steps (if the steps are meaningful processes on their own), so use an actor for every step, where every actor sends a oneway message to the next, possibly also oneway messages to some other actor that will not block which can supervise the process. This way you could create chains of actors, of which you could make many, in front of it you could put a load balancing actor, so that if one actor blocks in one chain another of the same type might not in the other chain. That would also work for your 'context' question, pass of workload to local actors, chain them up behind a load balancing actor.
As for netty (and I assume you mean Remote Actors, because this is the only thing that netty is used for in Akka), pass of your work as soon as possible to a local actor or a future (with callback) if you are worried about timing or preventing netty to do it's job in some way.
Blocking operations will generally not throw exceptions, but waiting on a future (for example by using !! or !!! send methods) can throw a time out exception. That's why you should stick with fire-and-forget as much as possible, use a meaningful time-out value and prefer callbacks when possible.
An akka actor cannot explicitly process several messages in a row, but you can play with the throughput value via the config file. The actor will then process several message (i.e. its receive method will be called several times sequentially) if its message queue it's not empty: http://akka.io/docs/akka/1.1.3/scala/dispatchers.html#id5
Blocking operations inside an actor will not "block" all actors, but if you share threads among actors (recommended usage), one of the threads of the dispatcher will be blocked until operations resume. So try composing futures as much as possible and beware of the time-out value).
3 and 4. I agree with Raymond answers.
What Raymond and paradigmatic said, but also, if you want to avoid starving the thread pool, you should wrap any blocking operations in scala.concurrent.blocking.
It's of course best to avoid blocking operations, but sometimes you need to use a library that blocks. If you wrap said code in blocking, it will let the execution context know you may be blocking this thread so it can allocate another one if needed.
The problem is worse than paradigmatic describes since if you have several blocking operations you may end up blocking all threads in the thread pool and have no free threads. You could end up with deadlock if all your threads are blocked on something that won't happen until another actor/future gets scheduled.
Here's an example:
import scala.concurrent.blocking
...
Future {
val image = blocking { load_image_from_potentially_slow_media() }
val enhanced = image.enhance()
blocking {
if (oracle.queryBetter(image, enhanced)) {
write_new_image(enhanced)
}
}
enhanced
}
Documentation is here.
Related
I am asking myself the question: "When should you use scala.concurrent.blocking?"
If I understood correctly, the blocking {} only makes sense to be used in conjunction with the ForkJoinPool. In addition docs.scala-lang.org highlights, that blocking shouldn't be used for long running executions:
Last but not least, you must remember that the ForkJoinPool is not designed for long-lasting blocking operations.
I assume a long running execution is a database call or some kind of external IO. In this case a separate thread pools should be used, e.g. CachedThreadPool. Most IO related frameworks, like sttp, doobie, cats can make use of a provided IO thread pool.
So I am asking myself, which use-case still exists for the blocking statement? Is this only useful, when working with locking and waiting operations, like semaphores?
Consider the problem of thread pool starvation. Say you have a fixed size thread pool of 10 available threads, something like so:
implicit val myFixedThreadPool =
ExecutionContext.fromExecutor(Executors.newFixedThreadPool(10))
If for some reason all 10 threads are tied up, and a new request comes in which requires an 11th thread to do its work, then this 11th request will hang until one of the threads becomes available.
blocking { Future { ... } } construct can be interpreted as saying please do not consume a thread from myFixedThreadPool but instead spin up a new thread outside myFixedThreadPool.
One practical use case for this is if your application can conceptually be considered to be in two parts, one part which say in 90% of cases is talking to proper async APIs, but there is another part which in few special cases has to talk to say a very slow external API which takes many seconds to respond and which we have no control over. Using the fixed thread pool for the true async part is relatively safe from thread pool starvation, however also using the same fixed thread pool for the second part presents the danger of the situation where suddenly 10 requests are made to the slow external API, which now causes 90% of other requests to hang waiting for those slow requests to finish. Wrapping those slow requests in blocking would help minimise the chances of 90% of other requests from hanging.
Another way of achieving this kind of "swimlaning" of true async request from blocking requests is by offloading the blocking request to a separate dedicated thread pool to be used just for the blocking calls, something like so
implicit val myDefaultPool =
ExecutionContext.fromExecutor(Executors.newFixedThreadPool(10))
val myPoolForBlockingRequests =
ExecutionContext.fromExecutor(Executors.newFixedThreadPool(20))
Future {
callAsyncApi
} // consume thread from myDefaultPool
...
Future {
callBlockingApi
}(myPoolForBlockingRequests) // consume thread from myPoolForBlockingRequests
I am asking myself the question: "When should you use scala.concurrent.blocking?"
Well, since that is mostly useful for Future and Future should never be used for serious business logic then never.
Now, "jokes" aside, when using Futures then you should always use blocking when wrapping blocking operations, AND receive a custom ExecutionContext; instead of hardcoding the global one. Note, this should always be the case, even for non-blocking operations, but IME most folks using Future don't do this... but that is another discussion.
Then, callers of those blocking operations may decide if they will use their compute EC or a blocking one.
When the docs mention long-lasting they don't mean anything specific, mostly because is too hard to be specific about that; is context / application specific. What you need to understand is that blocking by default (note the actual EC may do whatever they want) will just create a new thread, and if you create a lot of threads and they take too long to be released you will saturate your memory and kill the program with an OOM error.
For those situations, the recommendation is to control the back pressure of your app to avoid creating too many threads. One way to do that is to create a fixed thread pool for the maximum number of blocking operations you will support and just enqueue all other pending tasks; such EC should just ignore blocking calls. You may also just have an unbound number of threads but manage the back pressure manually in other parts of your code; e.g. with an explicit Queue, this was common advice before: https://gist.github.com/djspiewak/46b543800958cf61af6efa8e072bfd5c
However, having blocked threads is always hurtful for the performance of your app, even if the compute EC is not blocked. The latest talks by Daniel explain those in detail: "The case for effect systems" & "Threads at scale".
So the ecosystem is pushing hard the state of the art to avoid that at all costs but is not a simple task. Still, runtimes like the ones provided by cats-effect or ZIO are optimized to handle blocking tasks the best they can as of today, and will probably improve during this and next years.
I've been learning play, and I'm getting most of the major concepts, but I'm struggling with what magic the platform is doing to enable all of these things.
In particular, let's say I have a controller that does something time-intensive. Now I understand how using Futures and asynchronous processing I can make these things appear not to block, but if it's something resource intensive, of course in the end it must block somewhere. Per the documentation:
You can’t magically turn synchronous IO into asynchronous by wrapping it in a Future. If you can’t change the application’s architecture to avoid blocking operations, at some point that operation will have to be executed, and that thread is going to block. So in addition to enclosing the operation in a Future, it’s necessary to configure it to run in a separate execution context that has been configured with enough threads to deal with the expected concurrency.
This bit I'm not understanding: if some task that I'm doing via a Future is possibly being handled in a separate thread pool, how/what magic is Scala/Play doing in the framework to coordinate these threads such that whichever thread is listening to the HTTP socket blocks long enough to do all of the complex processing (DB loads, serialization to JSON, etc. etc.) -- in separate threads, and yet somehow returning to the original blocking thread that has to send something back to the client for that request?
Disclaimer: this is a simplified answer for the general problem, I don't want to make this even more complex by going inside Play and Akka internals.
One method is to have a thread listening to the socket, but not writing to it, let's call it A. A spans a Future that contains, on itself, all the data needed for the computation. It is important that you don't confuse the thread that does the processing with the data that is being processed, as the data (memory) is shared by all threads (and sometimes needs explicit synchronization). The future will be processed (eventually), by a thread B.
Now, do I need for A to block until B is done? It could (and in many general cases that might be the right solution), but in this case, we hardly want to stop listening to our socket. So no, we don't, A forgets everything about the message and carries on with its life.
So when B is done, the Future might be mapped or have a listener that sends the proper response. B itself can send it given the information that it has on the original message! You just need to be careful synchronizing access to the socket, to avoid colliding with a possible thread C that might have been processing a previous or later message in parallel.
Things can obviously get more complex by having threads spawning even more threads, queues where some threads write data and other read data, etc. (Play, being based in Akka, certainly includes a lot of message queues). But I hope to have convinced you that while this statement is correct:
You can’t magically turn synchronous IO into asynchronous by wrapping
it in a Future. If you can’t change the application’s architecture to
avoid blocking operations
Such a change in application's architecture is certainly possible in many (most?) cases, and certainly has been done inside Play.
I'm new to akka-actor and confused with some problems:
when I create an actorSystem, and use actorOf(Props(classOf[AX], ...)) to create actor in main method, how many instances are there for my actor AX?
If the answer to Q1 was just one, does this mean whatever data-structure I created in the AX actor class's definition will only appear in one thread and I should not concern about concurrency problems?
What if one of my actor's action (one case in receive method) is a time consuming task and would take quite long time to finish? Will my single Actor instance not responding until it finish that task?
If the answer to Q3 is right, what I am supposed to do to prevent my actor from not responding? Should I start another thread and send another message back to it until finish the task? Is there a best practice there I should follow?
yes, the actor system will only create 1 actor instance for each time you call the 'actorOf' method. However, when using a Router it is possible to create 1 router which spreads the load to any number of actors. So in that case it is possible to construct multiple instances, but 'normally' using actorOf just creates 1 instance.
Yes, within an actor you do not have to worry about concurrency because Akka guarantees that any actor only processes 1 message at the time. You must take care not to somehow mutate the state of the actor from code outside the actor. So whenever exposing the actor state, always do this using an immutable class. Case classes are excellent for this. But also be ware of modifying the actor state when completing a Future from inside the actor. Since the Future runs on it's own thread you could have a concurrency issue when the Future completes and the actor is processing a next message at the same time.
The actor executes on 1 thread at the time, but this might be a different thread each time the actor executes.
Akka is a highly concurrent and distributed framework, everything is asynchronous and non-blocking and you must do the same within your application. Scala and Akka provide several solutions to do this. Whenever you have a time consuming task within an actor you might either delegate the time consuming task to another actor just for this purpose, use Futures or use Scala's 'async/await/blocking'. When using 'blocking' you give a hint to the compiler/runtime a blocking action is done and the runtime might start additional thread to prevent thread starvation. The Scala Concurrent programming book is an excellent guide to learn this stuff. Also look at the concurrent package ScalaDocs and Neophyte's Guide to Scala.
If the actor really has to wait for the time consuming task to complete, then yes, your actor can only respond when that's finished. But this is a very 'request-response' way of thinking. Try to get away from this. The actor could also respond immediately indicating the task has started and send an additional message once the task has been completed.
With time consuming tasks always be sure to use a different threadpool so the ActorSystem will not be blocked because all of it's available threads are used up by time consuming tasks. For Future's you can provide a separate ExecutionContext (do not use the ActorSystem's Dispatch context for this!), but via Akka's configuration you can also configure certain actors to run on a different thread pool.
See 3.
Success!
one instance (if you declare a router in your props then (maybe) more than one)
Yes. This is one of the advantages of actors.
Yes. An Actor will process messages sequentially.
You can use scala.concurrent.Future (do not use actor state in the future) or delegate the work to a child actor (the main actor can manage the state and can respond to messages). Future or child-actor depends on use case.
I'm relatively new to Akka & Scala, but I would like to use Akka as a generic framework to pull together information from various web tools, and cli commands.
I understand the general principal that in an Actor model, it is highly desirable not to have the actors block. And in the case of the http requests, there are async http clients (such as Spray) that means that I can handle the requests asynchronously within the Actor framework.
However, I'm unsure what is the best approach when combining actors with existing blocking API calls such as the scala ProcessBuilder/ProcessIO libraries. In terms of issuing these CLI commands I expect a relatively small amount of concurrency, e.g. perhaps executing a max of 10 concurrent CLI invocations on a 12 core machine.
Is it better to have a single actor managing these CLI commands, farming the actual work off to Futures that are created as needed? Or would it be cleaner just to maintain a set of separate actors backed by a PinnedDispatcher? Or something else?
From the Akka documentation ( http://doc.akka.io/docs/akka/snapshot/general/actor-systems.html#Blocking_Needs_Careful_Management ):
"
Blocking Needs Careful Management
In some cases it is unavoidable to do blocking operations, i.e. to put a thread to sleep for an indeterminate time, waiting for an external event to occur. Examples are legacy RDBMS drivers or messaging APIs, and the underlying reason in typically that (network) I/O occurs under the covers. When facing this, you may be tempted to just wrap the blocking call inside a Future and work with that instead, but this strategy is too simple: you are quite likely to find bottle-necks or run out of memory or threads when the application runs under increased load.
The non-exhaustive list of adequate solutions to the “blocking problem” includes the following suggestions:
Do the blocking call within an actor (or a set of actors managed by a router [Java, Scala]), making sure to configure a thread pool which is either dedicated for this purpose or sufficiently sized.
Do the blocking call within a Future, ensuring an upper bound on the number of such calls at any point in time (submitting an unbounded number of tasks of this nature will exhaust your memory or thread limits).
Do the blocking call within a Future, providing a thread pool with an upper limit on the number of threads which is appropriate for the hardware on which the application runs.
Dedicate a single thread to manage a set of blocking resources (e.g. a NIO selector driving multiple channels) and dispatch events as they occur as actor messages.
The first possibility is especially well-suited for resources which are single-threaded in nature, like database handles which traditionally can only execute one outstanding query at a time and use internal synchronization to ensure this. A common pattern is to create a router for N actors, each of which wraps a single DB connection and handles queries as sent to the router. The number N must then be tuned for maximum throughput, which will vary depending on which DBMS is deployed on what hardware."
I assume that the messages will be received and processed in a threadsafe manner. However, I have been reading (some) akka/scala docs but I didn't encounter the keyword 'threadsafe' yet.
It is probably because the actor model assumes that each actor instance processes its own mailbox sequentially. That means it should never happen, that two or more concurrent threads execute single actor instance's code. Technically you could create a method in an actor's class (because it is still an object) and call it from multiple threads concurrently, but this would be a major departure from the actor's usage rules and you would do it "at your own risk", because then you would lose all thread-safety guarantees of that model.
This is also one of the reasons, why Akka introduced a concept of ActorRef - a handle, that lets you communicate with the actor through message passing, but not by calling its methods directly.
I think we have it pretty well documented: http://doc.akka.io/docs/akka/2.3.9/general/jmm.html
Actors are 'Treadsafe'. The Actor System (AKKA), provides each actor with its own 'light-weight thread'. Meaning that this is not a tread, but the AKKA system will give the impression that an Actor is always running in it's own thread to the developer. This means that any operations performed as a result of acting on a message are, for all purposes, thread safe.
However, you should not undermine AKKA by using mutable messages or public state. If you develop you actors to be stand alone units of functionality, then they will be threadsafe.
See also:
http://doc.akka.io/docs/akka/2.3.12/general/actors.html#State
and
http://doc.akka.io/docs/akka/2.3.12/general/jmm.html for a more indepth study of the AKKA memory model and how it manages 'tread' issues.