side by side multiply histogram in matlab - matlab

I would like to produce a plot like the following in matlab.
Or may be something like this

You can use bar(...) or hist(...) to get the results you want. Consider the following code with results shown below:
% Make some play data:
x = randn(100,3);
[y, b] = hist(x);
% You can plot on your own bar chart:
figure(82);
bar(b,y, 'grouped');
title('Grouped bar chart');
% Bust histogram will work here:
figure(44);
hist(x);
title('Histogram Automatically Grouping');
% Consider stack for the other type:
figure(83);
bar(b,y,'stacked');
title('Stacked bar chart');
If your data is different sizes and you want to do histograms you could choose bins yourself to force hist(...) results to be the same size then plot the results stacked up in a matrix, as in:
data1 = randn(100,1); % data of one size
data2 = randn(25, 1); % data of another size!
myBins = linspace(-3,3,10); % pick my own bin locations
% Hists will be the same size because we set the bin locations:
y1 = hist(data1, myBins);
y2 = hist(data2, myBins);
% plot the results:
figure(3);
bar(myBins, [y1;y2]');
title('Mixed size result');
With the following results:

Doesn't hist already do the first one?
From help hist:
N = HIST(Y) bins the elements of Y into 10 equally spaced containers
and returns the number of elements in each container. If Y is a
matrix, HIST works down the columns.
For the second look at help bar

Related

MATLAB: combining and normalizing histograms with different sample sizes

I have four sets of data, the distribution of which I would like to represent in MATLAB in one figure. Current code is:
[n1,x1]=hist([dataset1{:}]);
[n2,x2]=hist([dataset2{:}]);
[n3,x3]=hist([dataset3{:}]);
[n4,x4]=hist([dataset4{:}]);
bar(x1,n1,'hist');
hold on; h1=bar(x1,n1,'hist'); set(h1,'facecolor','g')
hold on; h2=bar(x2,n2,'hist'); set(h2,'facecolor','g')
hold on; h3=bar(x3,n3,'hist'); set(h3,'facecolor','g')
hold on; h4=bar(x4,n4,'hist'); set(h4,'facecolor','g')
hold off
My issue is that I have different sampling sizes for each group, dataset1 has an n of 69, dataset2 has an n of 23, dataset3 and dataset4 have n's of 10. So how do I normalize the distributions when representing these three groups together?
Is there some way to..for example..divide the instances in each bin by the sampling for that group?
You can normalize your histograms by dividing by the total number of elements:
[n1,x1] = histcounts(randn(69,1));
[n2,x2] = histcounts(randn(23,1));
[n3,x3] = histcounts(randn(10,1));
[n4,x4] = histcounts(randn(10,1));
hold on
bar(x4(1:end-1),n4./sum(n4),'histc');
bar(x3(1:end-1),n3./sum(n3),'histc');
bar(x2(1:end-1),n2./sum(n2),'histc');
bar(x1(1:end-1),n1./sum(n1),'histc');
hold off
ax = gca;
set(ax.Children,{'FaceColor'},mat2cell(lines(4),ones(4,1),3))
set(ax.Children,{'FaceAlpha'},repmat({0.7},4,1))
However, as you can see above, you can do some more things to make your code more simple and short:
You only need to hold on once.
Instead of collecting all the bar handles, use the axes handle.
Plot the bar in ascending order of the number of elements in the dataset, so all histograms will be clearly visible.
With the axes handle set all properties at one command.
and as a side note - it's better to use histcounts.
Here is the result:
EDIT:
If you want to also plot the pdf line from histfit, then you can save it first, and then plot it normalized:
dataset = {randn(69,1),randn(23,1),randn(10,1),randn(10,1)};
fits = zeros(100,2,numel(dataset));
hold on
for k = numel(dataset):-1:1
total = numel(dataset{k}); % for normalizing
f = histfit(dataset{k}); % draw the histogram and fit
% collect the curve data and normalize it:
fits(:,:,k) = [f(2).XData; f(2).YData./total].';
x = f(1).XData; % collect the bar positions
n = f(1).YData; % collect the bar counts
f.delete % delete the histogram and the fit
bar(x,n./total,'histc'); % plot the bar
end
ax = gca; % get the axis handle
% set all color and transparency for the bars:
set(ax.Children,{'FaceColor'},mat2cell(lines(4),ones(4,1),3))
set(ax.Children,{'FaceAlpha'},repmat({0.7},4,1))
% plot all the curves:
plot(squeeze(fits(:,1,:)),squeeze(fits(:,2,:)),'LineWidth',3)
hold off
Again, there are some other improvements you can introduce to your code:
Put everything in a loop to make thigs more easily changed later.
Collect all the curves data to one variable so you can plot them all together very easily.
The new result is:

In Matlab, how to draw lines from the curve to specific xaxis position?

I have a spectral data (1000 variables on xaxis, and peak intensities as y) and a list of peaks of interest at various specific x locations (a matrix called Peak) which I obtained from a function I made. Here, I would like to draw a line from the maximum value of each peaks to the xaxis - or, eventually, place a vertical arrow above each peaks but I read it is quite troublesome, so just a vertical line is welcome. However, using the following code, I get "Error using line Value must be a vector of numeric type". Any thoughts?
X = spectra;
[Peak,intensity]=PeakDetection(X);
nrow = length(Peak);
Peak2=Peak; % to put inside the real xaxis value
plot(xaxis,X);
hold on
for i = 1 : nbrow
Peak2(:,i) = round(xaxis(:,i)); % to get the real xaxis value and round it
xline = Peak2(:,i);
line('XData',xline,'YData',X,'Color','red','LineWidth',2);
end
hold off
Simple annotation:
Here is a simple way to annotate the peaks:
plot(x,y,x_peak,y_peak+0.1,'v','MarkerFaceColor','r');
where x and y is your data, and x_peak and y_peak is the coordinates of the peaks you want to annotate. The add of 0.1 is just for a better placing of the annotation and should be calibrated for your data.
For example (with some arbitrary data):
x = 1:1000;
y = sin(0.01*x).*cos(0.05*x);
[y_peak,x_peak] = PeakDetection(y); % this is just a sketch based on your code...
plot(x,y,x_peak,y_peak+0.1,'v','MarkerFaceColor','r');
the result:
Line annotation:
This is just a little bit more complicated because we need 4 values for each line. Again, assuming x_peak and y_peak as before:
plot(x,y);
hold on
ax = gca;
ymin = ax.YLim(1);
plot([x_peak;x_peak],[ymin*ones(1,numel(y_peak));y_peak],'r')
% you could write instead:
% line([x_peak;x_peak],[ymin*ones(1,numel(y_peak));y_peak],'Color','r')
% but I prefer the PLOT function.
hold off
and the result:
Arrow annotation:
If you really want those arrows, then you need to first convert the peak location to the normalized figure units. Here how to do that:
plot(x,y);
ylim([-1.5 1.5]) % only for a better look of the arrows
peaks = [x_peak.' y_peak.'];
ax = gca;
% This prat converts the axis unites to the figure normalized unites
% AX is a handle to the figure
% PEAKS is a n-by-2 matrix, where the first column is the x values and the
% second is the y values
pos = ax.Position;
% NORMPEAKS is a matrix in the same size of PEAKS, but with all the values
% converted to normalized units
normpx = pos(3)*((peaks(:,1)-ax.XLim(1))./range(ax.XLim))+ pos(1);
normpy = pos(4)*((peaks(:,2)-ax.YLim(1))./range(ax.YLim))+ pos(2);
normpeaks = [normpx normpy];
for k = 1:size(normpeaks,1)
annotation('arrow',[normpeaks(k,1) normpeaks(k,1)],...
[normpeaks(k,2)+0.1 normpeaks(k,2)],...
'Color','red','LineWidth',2)
end
and the result:

Plot confusion matrix

I want to plot a confusion matrix in MATLAB. Here's my code;
data = rand(3, 3)
imagesc(data)
colormap(gray)
colorbar
When I run this, a confusion matrix with a color bar is shown. But usually, I have seen confusion matrix in MATLAB will give counts as well as probabilities. How can I get them? How can I change the class labels which will be shown as 1,2,3, etc.?
I want a matrix like this:
If you do not have the neural network toolbox, you can use plotConfMat. It gets you the following result.
I have also included an independent example below without the need for the function:
% sample data
confmat = magic(3);
labels = {'Dog', 'Cat', 'Horse'};
numlabels = size(confmat, 1); % number of labels
% calculate the percentage accuracies
confpercent = 100*confmat./repmat(sum(confmat, 1),numlabels,1);
% plotting the colors
imagesc(confpercent);
title('Confusion Matrix');
ylabel('Output Class'); xlabel('Target Class');
% set the colormap
colormap(flipud(gray));
% Create strings from the matrix values and remove spaces
textStrings = num2str([confpercent(:), confmat(:)], '%.1f%%\n%d\n');
textStrings = strtrim(cellstr(textStrings));
% Create x and y coordinates for the strings and plot them
[x,y] = meshgrid(1:numlabels);
hStrings = text(x(:),y(:),textStrings(:), ...
'HorizontalAlignment','center');
% Get the middle value of the color range
midValue = mean(get(gca,'CLim'));
% Choose white or black for the text color of the strings so
% they can be easily seen over the background color
textColors = repmat(confpercent(:) > midValue,1,3);
set(hStrings,{'Color'},num2cell(textColors,2));
% Setting the axis labels
set(gca,'XTick',1:numlabels,...
'XTickLabel',labels,...
'YTick',1:numlabels,...
'YTickLabel',labels,...
'TickLength',[0 0]);
If you have the neural network toolbox you can use the function plotconfusion. You can create a copy and edit it to customise it further, for example to print custom labels.

MATLAB quickie: How to plot markers on a freqs plot?

I haven't used MATLAB in a while and I am stuck on a small detail. I would really appreciate it if someone could help me out!
So I am trying to plot a transfer function using a specific function called freqs but I can't figure out how I can label specific points on the graph.
b = [0 0 10.0455]; % Numerator coefficients
a = [(1/139344) (1/183.75) 1]; % Denominator coefficients
w = logspace(-3,5); % Frequency vector
freqs(b,a,w)
grid on
I want to mark values at points x=600 Hz and 7500 Hz with a marker or to be more specific, points (600,20) and (7500,-71), both of which should lie on the curve. For some reason, freqs doesn't let me do that.
freqs is very limited when you want to rely on it plotting the frequency response for you. Basically, you have no control on how to modify the graph on top of what MATLAB generates for you.
Instead, generate the output response in a vector yourself, then plot the magnitude and phase of the output yourself so that you have full control. If you specify an output when calling freqs, you will get the response of the system.
With this, you can find the magnitude of the output by abs and the phase by angle. BTW, (600,20) and (7500,-71) make absolutely no sense unless you're talking about magnitude in dB.... which I will assume is the case for the moment.
As such, we can reproduce the plot that freqs gives by the following. The key is to use semilogx to get a semi-logarithmic graph on the x-axis. On top of this, declare those points that you want to mark on the magnitude, so (600,20) and (7500,-71):
%// Your code:
b = [0 0 10.0455]; % Numerator coefficients
a = [(1/139344) (1/183.75) 1]; % Denominator coefficients
w = logspace(-3,5); % Frequency vector
%// New code
h = freqs(b,a,w); %// Output of freqs
mag = 20*log10(abs(h)); %// Magnitude in dB
pha = (180/pi)*angle(h); %// Phase in degrees
%// Declare points
wpt = [600, 7500];
mpt = [20, -71];
%// Plot the magnitude as well as markers
figure;
subplot(2,1,1);
semilogx(w, mag, wpt, mpt, 'r.');
xlabel('Frequency');
ylabel('Magnitude (dB)');
grid;
%// Plot phase
subplot(2,1,2);
semilogx(w, pha);
xlabel('Frequency');
ylabel('Phase (Degrees)');
grid;
We get this:
If you check what freqs generates for you, you'll see that we get the same thing, but the magnitude is in gain (V/V) instead of dB. If you want it in V/V, then just plot the magnitude without the 20*log10() call. Using your data, the markers I plotted are not on the graph (wpt and mpt), so adjust the points to whatever you see fit.
There are a couple issues before we attempt to answer your question. First, there is no data-point at 600Hz or 7500Hz. These frequencies fall between data-points when graphed using the freqs command. See the image below, with datatips added interactively. I copy-pasted your code to generate this data.
Second, it does not appear that either (600,20) or (7500,-71) lie on the curves, at least with the data as you entered above.
One solution is to use plot a marker on the desired position, and use a "text" object to add a string describing the point. I put together a script using your data, to generate this figure:
The code is as follows:
b = [0 0 10.0455];
a = [(1/139344) (1/183.75) 1];
w = logspace(-3,5);
freqs(b,a,w)
grid on
figureHandle = gcf;
figureChildren = get ( figureHandle , 'children' ); % The children this returns may vary.
axes1Handle = figureChildren(1);
axes2Handle = figureChildren(2);
axes1Children = get(axes1Handle,'children'); % This should be a "line" object.
axes2Children = get(axes2Handle,'children'); % This should be a "line" object.
axes1XData = get(axes1Children,'xdata');
axes1YData = get(axes1Children,'ydata');
axes2XData = get(axes2Children,'xdata');
axes2YData = get(axes2Children,'ydata');
hold(axes1Handle,'on');
plot(axes1Handle,axes1XData(40),axes1YData(40),'m*');
pointString1 = ['(',num2str(axes1XData(40)),',',num2str(axes1YData(40)),')'];
handleText1 = text(axes1XData(40),axes1YData(40),pointString1,'parent',axes1Handle);
hold(axes2Handle,'on');
plot(axes2Handle,axes2XData(40),axes2YData(40),'m*');
pointString2 = ['(',num2str(axes2XData(40)),',',num2str(axes2YData(40)),')'];
handleText2 = text(axes2XData(40),axes2YData(40),pointString2,'parent',axes2Handle);

Distribution histogram

Hi i am trying to make a simple distribution histogram using some code from stack overflow
however i am unable to get it to work. i know that there are is a simple method for this using statistic toolbox but form a learning point of view i prefer a more explanatory code - can any one help me ?
%%
clear all
load('Mini Project 1.mat')
% Set data to var2
data = var2;
% Set the number of bins
nbins = 0:.8:8;
% Create a histogram plot of data sorted into (nbins) equally spaced bins
n = hist(data,nbins);
% Plot a bar chart with y values at each x value.
% Notice that the length(x) and length(y) have to be same.
bar(nbins,n);
MEAN = mean(data);
STD = sqrt(mean((data - MEAN).^2)); % can also use the simple std(data)
f = ( 1/(STD*sqrt(2*pi)) ) * exp(-0.5*((nbins-MEAN)/STD).^2 );
f = f*sum(nbins)/sum(f);
hold on;
% Plots a 2-D line plot(x,y) with the normal distribution,
% c = color cyan , Width of line = 2
plot (data,f, 'c', 'LineWidth', 2);
xlabel('');
ylabel('Firmness of apples after one month of storage')
title('Histogram compared to normal distribution');
hold of
You are confusing
hist
with
histc
Read up on both.
Also, you are not defining the number of bins, you are defining the bins themselves .
I don't have Matlab at hand now, but try the following:
If you want to compare a normal distribution to the bar plot bar(nbins,n), you should first normalize it:
bar(nbins,n/sum(n))
See if this solves your problem.
If not, try also removing the line f = f*sum(nbins)/sum(f);.