Sharding vs DFS - nosql

As far as I understand sharding (e.g in MongoDB) and distributed file systems (e.g. HDFS in HBase or HyperTable) are different mechanisms that databases use to scale-out, however I wonder how do they compare?

Traditional sharding involves breaking tables into a small number of pieces and running each piece (or "shard") in a separate database on a separate machine. Because of the large shard size, this mechanism can be prone to imbalances due to hot spots and unequal growth as was evidenced by the Foursquare incident. Also, because each shard is run on a separate machine, these systems can experience availability problems if one of the machines goes down. To mitigate this problem, most sharding systems, including MongoDB, implement replica groups. Each machine is replaced by a set of three machines in a master plus two slaves configuration. This way if a machine goes down, there are two remaining replicas to serve the data. There are a couple of problems with this design: First, if a replica fails in a replica group, and the group is only left with two members, to bring the replication count back to three, the data on one of these two machines needs to be cloned. Since there are only two machines in the entire cluster that can be used to re-create the replica, there will be enormous drag on one of these two machines while re-replication is taking place, causing serious performance problems on the shard in question (it takes over two hours to copy 1TB over a gigabit link). The second problem is that when one of the replicas goes down, it needs to be replaced with a new machine. Even if there is plenty of spare capacity across the cluster to resolve the replication problem, that spare capacity cannot be used to rectify the situation. The only way to solve it is to replace the machine. This becomes very challenging from an operational standpoint as cluster sizes grow up into the hundreds or thousands of machines.
The Bigtable+GFS design solves these problems. First, the table data is broken down into much finer grained "tablets". A typical machine in a Bigtable cluster will often have 500+ tablets. If an imbalance occurs, resolving it is just a simple matter of migrating a small number of tablets from one machine to another. If a TabletServer goes down, because the data set is broken down and replicated with such fine granularity, there can be hundreds of machines that participate in the recovery process, which distributes the recovery burden and speeds recovery time. Also, because the data is not tied to a specific machine or machines, the spare capacity on all machines in the cluster can be applied to the failure. There is no operational requirement to replace the machine since any of the spare capacity throughout the cluster can be used to rectify replication imbalance.
Doug Judd
CEO, Hypertable Inc.

Related

Sharding with replication

Sharding with replication]1
I have a multi tenant database with 3 tables(store,products,purchases) in 5 server nodes .Suppose I've 3 stores in my store table and I am going to shard it with storeId .
I need all data for all shards(1,2,3) available in nodes 1 and 2. But node 3 would contain only shard for store #1 , node 4 would contain only shard for store #2 and node 5 for shard #3. It is like a sharding with 3 replicas.
Is this possible at all? What database engines can be used for this purpose(preferably sql dbs)? Did you have any experience?
Regards
I have a feeling you have not adequately explained why you are trying this strange topology.
Anyway, I will point out several things relating to MySQL/MariaDB.
A Galera cluster already embodies multiple nodes (minimum of 3), but does not directly support "sharding". You can have multiple Galera clusters, one per "shard".
As with my comment about Galera, other forms of MySQL/MariaDB can have replication between nodes of each shard.
If you are thinking of having a server with all data, but replicate only parts to readonly Replicas, there are settings for replicate_do/ignore_database. I emphasize "readonly" because changes to these pseudo-shards cannot easily be sent back to the Primary server. (However see "multi-source replication")
Sharding is used primarily when there is simply too much traffic to handle on a single server. Are you saying that the 3 tenants cannot coexist because of excessive writes? (Excessive reads can be handled by replication.)
A tentative solution:
Have all data on all servers. Use the same Galera cluster for all nodes.
Advantage: When "most" or all of the network is working all data is quickly replicated bidirectionally.
Potential disadvantage: If half or more of the nodes go down, you have to manually step in to get the cluster going again.
Likely solution for the 'disadvantage': "Weight" the nodes differently. Give a height weight to the 3 in HQ; give a much smaller (but non-zero) weight to each branch node. That way, most of the branches could go offline without losing the system as a whole.
But... I fear that an offline branch node will automatically become readonly.
Another plan:
Switch to NDB. The network is allowed to be fragile. Consistency is maintained by "eventual consistency" instead of the "[virtually] synchronous replication" of Galera+InnoDB.
NDB allows you to immediately write on any node. Then the write is sent to the other nodes. If there is a conflict one of the values is declared the "winner". You choose which algorithm for determining the winner. An easy-to-understand one is "whichever write was 'first'".

Is there any reason to have multiple postgres instances on the same machine?

So a large part of my work involves a postgres system spread between many machines. The way we've been handling sharding is to create a separate postgres instance for each database shard. There are about ~10 shards per machine, each is bound to a distinct port, systemctl service, data root, config, etc.
These are large databases which have the potential to consume a lot of memory.
I inherited the sharding system from a previous developer, but I haven't thought to change it because it has been functioning so far. Is this a bad practice? Are there any potential side effects?
It is fine to have multiple PostgreSQL instances on a single machine to be able to start, stop and upgrade databases independently.
However, it is strange to see a sharding solution where multiple shards are on a single machine. That seems like a waste of resources. But perhaps the idea is to move shards to other machines later, when load increases.

Why does a mongodb replica set need an odd number of voting members?

If find the replica set requirement a bit confusing, and I'm probably missing something obvious (like under which condition there are elections).
I understand that in normal operations you need quorum, and a voting takes place and to get a majority you need and odd numbers of machines.
But since we use a replica set for failover, if the master dies, then we are left with an even number of voting members, which based on my limited experience lengthen the time to elect a primary.
Also according to the documentation, the addition of a voting member doesn't start an election, it would seem that starting (booting) you replica set with an even number of nodes would make more sense?
So if we start say with 4 machines in the replica set, and one machine dies, there is a re-election with 3 machines, fast quorum. We add a machine back to get back to our normal operation state, no re-election and we are back to our normal operation conditions.
Can someone shed a light on this?
TL;DR: With single master systems, even partitions make it impossible to determine which remainder still has a majority, taking both systems down.
Let N be a cluster of four machines:
One machine dies, the others resume operation. Good.
Two machines die, we're offline because we no longer get a majority. Bad.
Let M be a cluster of three machines:
One machine dies, the others resume operation. Good.
Two machines die, we're offline because we no longer get a majority. Bad.
=> Same result at 3/4 of the cost.
Now, let's add an assumption or two:
We're also going to operate some kind of server application that uses the database
The network can be partitioned
Let's say you have two datacenters, one with two database instances and the backend server machines. If the connection to the backup center (which has one MongoDB instance) fails, you're still online.
Now if you added a second MongoDB instance at the backup data center, a network partition would, despite seemingly higher redundancy, yield lower availability since we'd lose the majority in case of a network partition and can't continue to operate.
=> Less availability at higher cost. But that doesn't answer the question yet.
Let's say you're really worried about availability: You have two data centers, with backend servers in both datacenters, anycast IPs, the whole deal. Now the network between the two DCs is partitioned, but some clients connect to DC A while other reach DC B. How do you now determine which datacenter may accept writes? It's not possible - this is why the odd number is necessary.
You don't actually need Anycast IPs, BGP or any fancy stuff for the problem to become real, any writing application (like a worker, a stale request, anything) would require later merging different writes, which is a completely different concurrency scheme.

MongoDB Sharding On One Machine

Does it make sense to implement mongodb sharding with say 100 shards on one beefier machine just to achieve higher concurrenct write into the database as I am told, there is a global lock for each monogod.exe process? Assuming that is possible, will that aproach give me higher write concurrency?
Running multiple mongods on a machine is not a good idea. Every one of the mongod processes will try to use all the available memory, forcing other mongod's memory mapped pages out of memory. This will create an enormous amount of swapping in most cases.
The global database lock is generally not a problem as is demonstrated in: http://blog.pythonisito.com/2011/12/mongodbs-write-lock.html
Only use one mongod per machine (but it's fine to add a mongos or config server as well), unless it's for some simple testing.
cheers,
Derick
I totally disagree. We run 8 shards per box in our setup. It consists of two head nodes each with two other machines for replication. 6 boxes total. These are beefy boxes with about 120GB of RAM, 32 Cores and 2TB each. By having 8 shards per box (we could go higher by the way this is set at 8 for historic purposes) we make sure we utilize the CPU efficiently. The RAM sorts itself out. You do have to watch the metrics and make sure you aren't paging too much but with SSD drives (which we have) if you do spill onto the disk drives it isn't too bad.
The only use case where I found running several mongod on the same server was to increase replication speed on high latency connection.
As highlighted by Derick, the write lock is not really your issue when running mongodb.
To answer your question : yes you can demonstrate mongo scaling with several instance per machine (4 instances per server sems to be enough) if your test does not involve too much data (otherwise page out will dramatically decrase your performance, I have already tested it)
However, instances will still compete for resources. All you will manage to do is to shift the database lock issue to a resource lock issue.
Yes, you can and in fact that's what we do for 50+ mil write-heavy database. Just make sure all your indexes per mongod fit into the RAM and there's room for growth and maintenance.
However, there's a small trade-off: Depending on what your target QPS is, this kind of sharing requires machines with more horsepower, whereas sharding on a single machine will not and in most cases you can do away with commodity, cheaper hardware.
Whatever the case is, do the series of performance tests (ageinst IO, Network, PQS etc) and establish your baseline carefully and consider SSD drives for storage and this may sound biased, but Linux XFS storage is also something to consider.

mongoDB replication+sharding on 2 servers reasonable?

Consider the following setup:
There a 2 physical servers which are set up as a regular mongodb replication set (including an arbiter process, so automatic failover will work correctly).
now, as far as i understand, most actual work will be done on the primary server, while the slave will mostly just do work to keep its dataset in sync.
Would it be reasonable, to introduce sharding into this setup in a way that one would set up another replication set on the same 2 servers, so that each of them has one mongod process running as primary and one process running as secondary.
The expected result would be that both servers will share the workload of actual querys/inserts while both are up. In the case of one server failing the whole setup should elegantly fail over to continue running, until the other server is restored.
Are there any downsides to this setup, except the overall overhead in setup and number of processes (mongos/configservers/arbiters)?
That would definitely work. I'd asked a question in the #mongodb IRC channel a bit ago as to whether or not it was a bad idea to run multiple mongod processes on a single machine. The answer was "as long as you have the RAM/CPU/bandwidth, go nuts".
It's worth noting that if you're looking for high-performance reads, and don't mind writes being a bit slower, you could:
Do your writes in "safe mode", where the write doesn't return until it's been propagated to N servers (in this case, where N is the number of servers in the replica set, so all of them)
Set the driver-appropriate flag in your connection code to allow reading from slaves.
This would get you a clustered setup similar to MySQL - write once on the master, but any of the slaves is eligible for a read. In a circumstance where you have many more reads than writes (say, an order of magnitude), this may be higher performance, but I don't know how it'd behave when a node goes down (since writes may stall trying to write to 3 nodes, but only 2 are up, etc - that would need testing).
One thing to note is that while both machines are up, your queries are being split between them. When one goes down, all queries will go to the remaining machine thus doubling the demands placed on it. You'd have to make sure your machines could withstand a sudden doubling of queries.
In that situation, I'd reconsider sharding in the first place, and just make it an un-sharded replica set of 2 machines (+1 arbiter).
You are missing one crucial detail: if you have a sharded setup with two physical nodes only, if one dies, all your data is gone. This is because you don't have any redundancy below the sharding layer (the recommended way is that each shard is composed of a replica set).
What you said about the replica set however is true: you can run it on two shared-nothing nodes and have an additional arbiter. However, the recommended setup would be 3 nodes: one primary and two secondaries.
http://www.markus-gattol.name/ws/mongodb.html#do_i_need_an_arbiter