I have a question about if something is possible using Tableau.
I already have a coastline plotted on one map using custom LatLon coordinates and I would like to take a user inputted Lat and Lon and plot a circle around it with let's say radius 10 and display it on the same map.
I was using this tutorial before to plot a circle:
https://www.crowdanalytix.com/communityBlog/customers-within-n-miles-radius-analysis-using-tableau
But I don't think the same approach can work with user-inputted fields because then it would require restructuring the data..
Okay, a (much smarter LOL) coworker helped me figure this out....
So my goal was to graph distance band (like a distance of 5 miles around a coast) . In order to do this we can use the distance between two coastline points since they are connected by a line, not a curve...From there we can find the perpendicular point a certain distance away and connect those points. Much easier than my circle idea...
Working on the Pacific Ocean, i am dealing with huge polygons covering the whole area. Some of them are quite simple and are defined by 4 points in my shapefile.
However, when i import them into SQL server 2008 r2 as new geographies, due to the shape of the earth, i end up with curved lines while I would like the North and South boundaries to stick to some specific latitudes: for example, the north boundaries should follow the 30N latitude from 120E to 120W.
How can i force my polygons to follow the latitudes? Converting them as geometry could have been an option but since i will need to do some length and area calculations, i need to keep them as geography.
Do i need to add additional vertices along my boundaries to force the polygon to stay on a specific latitude? What should be the interval between each vertex?
Thanks for your help
Sylvain
You have already answered this yourself. Long distances between latitude coordinates will create curved lines to match the Earth's curvature. Therefore if you need to "anchor" them along a specific latitude you will need to manually insert points. As for the interval, there's no right or wrong, a little experimentation here (and considering how "anal" you want to be about it hugging the line) will give you the result you desire. 1 coordinate per degree should do it, might even be a little overkill.
That said, I do question why you would want to anchor them to create a projected "straight" line as this will skew the results of length and area calculations, the bigger the polygon, the bigger the skew.
There are a lot of similar questions but I can't get a clear answer out of them. So, I want to represent latitude and longitude in a 2D space such that I can calculate the distances if necessary.
There is the equirectangular approach which can calculate the distances but this is not exactly what I want.
There is the UTM but it seems there are many zones and letters. So the distance should take into consideration the changing of zone which is not trivial.
I want to have a representation such that i can deal with x,y as numbers in Euclidean space and perform the standard distance formula on them without multiplying with the diameter of Earth every time I need to calculate the distance between two points.
Is there anything in Matlab that can change lat/long to x,y in Euclidean space?
I am not a matlab speciallist but the answer is not limited to matlab. Generally in GIS when you want to perform calculations in Euclidean space you have to apply 'projection' to the data. There are various types of projections, one of the most popular being Transverse Mercator
The common feature of such projections is the fact you can't precisely represent whole world with it. I mean the projection is based on chosen meridian and is precise enough up to some distance from it (e.g. Gauss Krueger projection is quite accurate around +-500km from the meridian.
You will always have to choose some kind of 'zone' or 'meridian', regardless of what projection you choose, because it is impossible to transform a sphere into plane without any deformations (be it distance, angle or area).
So if you are working on a set of data located around some geographical area you can simply transform (project) the data and treat it as normal Enclidean 2d space.
But if you think of processing data located around the whole world you will have to properly cluster and project it using proper zone.
I have a convex polygon in 3D. For simplicity, let it be a square with vertices, (0,0,0),(1,1,0),(1,1,1),(0,0,1).. I need to arrange these vertices in counter clockwise order. I found a solution here. It is suggested to determine the angle at the center of the polygon and sort them. I am not clear how is that going to work. Does anyone have a solution? I need a solution which is robust and even works when the vertices get very close.
A sample MATLAB code would be much appreciated!
This is actually quite a tedious problem so instead of actually doing it I am just going to explain how I would do it. First find the equation of the plane (you only need to use 3 points for this) and then find your rotation matrix. Then find your vectors in your new rotated space. After that is all said and done find which quadrant your point is in and if n > 1 in a particular quadrant then you must find the angle of each point (theta = arctan(y/x)). Then simply sort each quadrant by their angle (arguably you can just do separation by pi instead of quadrants (sort the points into when the y-component (post-rotation) is greater than zero).
Sorry I don't have time to actually test this but give it a go and feel free to post your code and I can help debug it if you like.
Luckily you have a convex polygon, so you can use the angle trick: find a point in the interior (e.g., find the midpoint of two non-adjacent points), and draw vectors to all the vertices. Choose one vector as a base, calculate the angles to the other vectors and order them. You can calculate the angles using the dot product: A · B = A B cos θ = |A||B| cos θ.
Below are the steps I followed.
The 3D planar polygon can be rotated to 2D plane using the known formulas. Use the one under the section Rotation matrix from axis and angle.
Then as indicated by #Glenn, an internal points needs to be calculated to find the angles. I take that internal point as the mean of the vertex locations.
Using the x-axis as the reference axis, the angle, on a 0 to 2pi scale, for each vertex can be calculated using atan2 function as explained here.
The non-negative angle measured counterclockwise from vector a to vector b, in the range [0,2pi], if a = [x1,y1] and b = [x2,y2], is given by:
angle = mod(atan2(y2-y1,x2-x1),2*pi);
Finally, sort the angles, [~,XI] = sort(angle);.
It's a long time since I used this, so I might be wrong, but I believe the command convhull does what you need - it returns the convex hull of a set of points (which, since you say your points are a convex set, should be the set of points themselves), arranged in counter-clockwise order.
Note that MathWorks recently delivered a new class DelaunayTri which is intended to superseded the functionality of convhull and other older computational geometry stuff. I believe it's more accurate, especially when the points get very close together. However I haven't tried it.
Hope that helps!
So here's another answer if you want to use convhull. Easily project your polygon into an axes plane by setting one coordinate zero. For example, in (0,0,0),(1,1,0),(1,1,1),(0,0,1) set y=0 to get (0,0),(1,0),(1,1),(0,1). Now your problem is 2D.
You might have to do some work to pick the right coordinate if your polygon's plane is orthogonal to some axis, if it is, pick that axis. The criterion is to make sure that your projected points don't end up on a line.
I have a certain geographic region defined by the bottom left and top right coordinates. How can I divide this region into areas of 20x20km. I mean in practial the shape of the earth is not flat it's round. The bounding box is just an approximation. It's not even rectangular in actual sense. It's just an assumption. Lets say the bottomleft coordinate is given by x1,y1 and the topright coordinate is given by x2,y2, the length of x1 to x2 at y1 is different than that of the length between x1 to x2 at y2. How can I overcome this issue
Actually, I have to create a spatial meshgrid for this region using matlab's meshgrid function. So that the grids are of area 20x20km.
meshgrid(x1:deltaY:x2,y1:deltaX:y2)
As you can see I can have only one deltaX and one deltaY. I want to choose deltaX and deltaY such that the increments create grid of size 20x20km. However this deltaX and deltaY are supposed to vary based upon the location. Any suggestions?
I mean lets say deltaX=del1. Then distance between points (x1,y1) to (x1,y1+del1) is 20km. BUt when I measure the distance between points (x2,y1) to (x2, y1_del1) the distance is < 20km. The meshgrid function above does creates mesh. But the distances are not consistent. Any ideas how to overcome this issue?
Bear in mind that 20km on the surface of the earth is a REALLY short distance, about .01 radians - so the area you're looking at would be approximated as flat for anything non-scientific. Assuming it is scientific...
To get something other than monotonic steps in meshgrid you should create a function which takes as its input your desired (x,y) and maps it relative to (x_0,y_0) and (x_max,y_max) in your units of choice. Here's an inline function demonstrating the idea of using a function for meshgrid steps
step=inline('log10(x)');
[x,y]=meshgrid(step(1:10),step(1:10));
image(255*x.*y)
colormap(gray(255))
So how do you determine what the function should be? That's hard for us to answer exactly without a little more information about what your data set looks like, how you're interacting with it, and what your accuracy requirements are. If you have access to the actual location at every point, you should vary one dimension at a time (if your data grid is aligned with your latitude grid, for example) and use a curve fit with model selection techniques (akaike/bayes criterion) to find the best function for your data.