I'm using Apple's "Simple Ping" example and it has almost all features that I need, but I don't know where I can set timeout of each packet. It seems that it isn't possible because function that is used to write data to socket doesn't have any timeout parameters. Does anybody have idea to change this app to get ability to set timeout like in windows ping command? By timeout I mean time for each packet sent to be discarded after waiting for response too long.
Windows ping command - timeout I need to have:
"-w Timeout : Specifies the amount of time, in milliseconds, to wait for the Echo Reply message that corresponds to a given Echo Request message to be received. If the Echo Reply message is not received within the time-out, the "Request timed out" error message is displayed. The default time-out is 4000 (4 seconds)."
Simple Ping code I'm using:
http://developer.apple.com/library/mac/#samplecode/SimplePing/Introduction/Intro.html
Apple sample code:
bytesSent = sendto(
CFSocketGetNative(self->_socket),
sock,
[packet bytes],
[packet length],
0,
(struct sockaddr *) [self.hostAddress bytes],
(socklen_t) [self.hostAddress length]
);
to change the timeout:
CFSocketNativeHandle sock = CFSocketGetNative(self->_socket);
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 100000; // 0.1 sec
setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, (void *)&tv, sizeof(tv));
bytesSent = sendto(
sock,
[packet bytes],
[packet length],
0,
(struct sockaddr *) [self.hostAddress bytes],
(socklen_t) [self.hostAddress length]
);
See Apple's docs: setsockopt
From the above referenced doc:
SO_SNDTIMEO is an option to set a timeout value for output operations. It accepts a struct timbal parameter with the number of seconds and microseconds used to limit waits for output operations to complete. If a send operation has blocked for this much time, it returns with a partial count or with the error EWOULDBLOCK if no data were sent. In the current implementation, this timer is restarted each time additional data are delivered to the protocol, implying that the limit applies to output portions ranging in size from the low-water mark to the high-water mark for output.
for example:
tv.tv_sec = 0;
tv.tv_usec = 1000;
setsockopt(recv_sock, SOL_SOCKET, SO_RCVTIMEO, (char *)&tv,sizeof(struct timeval));
setsockopt(send_sock, SOL_SOCKET, SO_SNDTIMEO, (char *)&tv,sizeof(struct timeval));
for additional options:
http://developer.apple.com/library/ios/#documentation/system/conceptual/manpages_iphoneos/man2/setsockopt.2.html
Related
I want to simulate a server that receives packets from multiple clients and process the data of these packets simultaneously together in NS-3. I have simulated one single server and client in NS-3 by modifying udp-echo-server and udp-echo-client applications in NS-3. Now, for implementing multiple clients, I modified the end lines of StartApplication function in udp-echo-server application as follows:
if((childpid=fork())==0)
{
m_socket->SetRecvCallback (MakeCallback(&UdpEchoServer::HandleRead, this));
m_socket6->SetRecvCallback (MakeCallback(&UdpEchoServer::HandleRead, this));
}
But it does not work. Actually, by connecting two clients, it just reads the first client and ignores the second client. It just runs StartApplication function once. Can anyone help me with this?
Thanks
The fundamental problem with what you're trying to do is that ns-3 is a single threaded simulator. You should not use fork to simulate forking. If you want multiple clients, you have to explicitly create them. I have quickly whipped up a simple example:
/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
// simple udp multi-client, single-server simulation to answer
// https://stackoverflow.com/q/59632211/13040392
#include "ns3/core-module.h"
#include "ns3/internet-module.h"
#include "ns3/point-to-point-module.h"
#include "ns3/ipv4-global-routing-helper.h"
#include "ns3/applications-module.h"
#include "ns3/point-to-point-grid.h"
#include "ns3/flow-monitor-module.h"
using namespace ns3;
NS_LOG_COMPONENT_DEFINE("UdpMultiClient");
int
main(int argc, char *argv[]) {
// create grid structure of network
// not necessary. Could just create topology manually
PointToPointHelper p2pLink;
PointToPointGridHelper grid (2, 2, p2pLink);
InternetStackHelper stack;
grid.InstallStack(stack);
// assign IP addresses to NetDevices
grid.AssignIpv4Addresses (Ipv4AddressHelper ("10.1.1.0", "255.255.255.0"),
Ipv4AddressHelper ("10.2.1.0", "255.255.255.0"));
Ipv4GlobalRoutingHelper::PopulateRoutingTables();
// configure and install server app
int serverPort = 8080;
UdpEchoServerHelper serverApp (serverPort);
serverApp.Install(grid.GetNode(0,0));
Address serverAddress = InetSocketAddress(grid.GetIpv4Address(0,0), serverPort);
// configure and install client apps
UdpEchoClientHelper clientApp (serverAddress);
clientApp.Install(grid.GetNode(0,1));
clientApp.Install(grid.GetNode(1,0));
clientApp.Install(grid.GetNode(1,1));
// install FlowMonitor to collect simulation statistics
FlowMonitorHelper flowHelper;
Ptr<FlowMonitor> flowMonitor = flowHelper.InstallAll();
// configure and run simulation
Simulator::Stop(Seconds(10));
NS_LOG_UNCOND("Starting simulation.");
Simulator::Run();
Simulator::Destroy();
NS_LOG_UNCOND("Simulation completed.");
// simulation complete
// get statistics of simlation from FlowMonitor
flowMonitor->CheckForLostPackets();
std::map<FlowId, FlowMonitor::FlowStats> stats = flowMonitor->GetFlowStats();
uint64_t txPacketsum = 0;
uint64_t rxPacketsum = 0;
uint64_t DropPacketsum = 0;
uint64_t LostPacketsum = 0;
double Delaysum = 0;
for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i = stats.begin(); i != stats.end(); ++i) {
txPacketsum += i->second.txPackets;
rxPacketsum += i->second.rxPackets;
LostPacketsum += i->second.lostPackets;
DropPacketsum += i->second.packetsDropped.size();
Delaysum += i->second.delaySum.GetSeconds();
}
NS_LOG_UNCOND(std::endl << " SIMULATION STATISTICS");
NS_LOG_UNCOND(" All Tx Packets: " << txPacketsum);
NS_LOG_UNCOND(" All Rx Packets: " << rxPacketsum);
NS_LOG_UNCOND(" All Delay: " << Delaysum / txPacketsum);
NS_LOG_UNCOND(" All Lost Packets: " << LostPacketsum);
NS_LOG_UNCOND(" All Drop Packets: " << DropPacketsum);
NS_LOG_UNCOND(" Packets Delivery Ratio: " << ((rxPacketsum * 100) / txPacketsum) << "%");
NS_LOG_UNCOND(" Packets Lost Ratio: " << ((LostPacketsum * 100) / txPacketsum) << "%");
// flowMonitor->SerializeToXmlFile("test.xml", true, true);
return 0;
}
As a quick note, in
UdpEchoClientHelper clientApp (serverAddress);
clientApp.Install(grid.GetNode(0,1));
clientApp.Install(grid.GetNode(1,0));
clientApp.Install(grid.GetNode(1,1));
we installed the UdpEchoClient on three Nodes. According to the documentation for this Application, UdpEchoClient sends a packet every 1000000000 ns = 1 s by default. Since we set the length of the simulation to 10 seconds using Simulator::Stop(Seconds(10));, we expect that each client will send 10 packets to the server. So, a total of 30 packets should be sent by clients. Also, since we are using UdpEchoServerHelper on the server, each packet will be echoed back by the server. Therefore, a total of 30 x 2 = 60 packets should be transmitted on the network.
The output of the script is
Starting simulation.
Simulation completed.
SIMULATION STATISTICS
All Tx Packets: 60
All Rx Packets: 60
All Delay: 0.0423177
All Lost Packets: 0
All Drop Packets: 0
Packets Delivery Ratio: 100%
Packets Lost Ratio: 0%
This answer actually demonstrates several features of ns-3, so feel free to ask any followup questions. I highly encourage you to check out the ns-3 documentation for classes you haven't encountered yet.
I am trying to determinate the different limits of the unix datagram sockets, as I am using it as IPC for my project.
The obscure thing I want to control is the size of my socket's internal buffer :
I want to know how many datagrams I can send before my socket would block.
I've understood that 2 differents limits affect the size of the socket's buffer :
/proc/sys/net/core/wmem_{max, default} sets the max (-default) size of a socket's writing buffer
/proc/sys/net/unix/max_dgram_qlen sets the maximum number of datagram the buffer can hold
I know that /proc/sys/net/core/rmem_{max, default} sets the max (-default) size of a socket's reading buffer but as I am working on local unix socket it doesn't seem to have a impact.
I have set wmem_{max, default} to 136314880 (130 MB) and max_dgram_qlen to 500000.
And wrote a small program where the sender socket only sends fixed size datagram to the receiver socket until is would block, I then print the size and number of datagram I was able to send.
Here is the code I used :
#include <err.h>
#include <stdio.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>
/* Payload size in bytes. */
#define PAYLOAD_SIZE 100
#define CALL_AND_CHECK(syscall) \
if (syscall < 0) { err(1, NULL); }
int main(void)
{
int receiver_socket_fd = socket(AF_UNIX, SOCK_DGRAM | SOCK_NONBLOCK, 0);
if (receiver_socket_fd < 0)
err(1, NULL);
char* binding_path = "test_socket";
struct sockaddr_un addr;
memset(&addr, 0, sizeof(addr));
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, binding_path, sizeof(addr.sun_path));
/* Check if the file exists, if yes delete it ! */
if (access(binding_path, F_OK) != -1) {
CALL_AND_CHECK(unlink(binding_path));
}
CALL_AND_CHECK(bind(receiver_socket_fd, (struct sockaddr const*) &addr, sizeof(addr)));
int sender_socket_fd = socket(AF_UNIX, SOCK_DGRAM | SOCK_NONBLOCK, 0);
if (sender_socket_fd < 0)
err(1, NULL);
CALL_AND_CHECK(connect(sender_socket_fd, (struct sockaddr const*) &addr, sizeof(addr)));
struct payload { char data[PAYLOAD_SIZE]; };
/* Create test payload with null bytes. */
struct payload test_payload;
memset(&test_payload.data, 0, PAYLOAD_SIZE);
ssize_t total_size_written = 0;
ssize_t size_written = 0;
do {
size_written = write(sender_socket_fd, (const void *) &test_payload, PAYLOAD_SIZE);
if (size_written > 0)
total_size_written += size_written;
} while (size_written > 0);
printf("socket_test: %zu bytes (%ld datagrams) were written before blocking, last error was :\n", total_size_written, total_size_written / PAYLOAD_SIZE);
perror(NULL);
CALL_AND_CHECK(unlink(binding_path));
CALL_AND_CHECK(close(sender_socket_fd));
CALL_AND_CHECK(close(receiver_socket_fd));
return 0;
}
I was expecting to reach either the max size in bytes of the socket (here 130MB) or the max number of datagram I set (500 000).
But the actual result is that I am only able to write 177494 datagrams before being blocked.
I can change the size of my payload it's always the same result (as long as I don't reach the maximum size in bytes first). So it seems that I am hitting a limit above max_dgram_qlen and wmem_{max, default} that I can't found.
I have of course tried to investigate ulimit or limits.conf without success. ulimit -b doesn't even work on my machine (says "options not found" and returns).
I am working on Debian 10 (buster) but have launched my test program on different OS with the same result : I hit a limit of datagram that I don't know about.
Do you have any idea of which limit I didn't see and I am reaching ? And if I can read or modify this limit ?
I have a recvfrom returning error 34, I have checked and it means "Numerical result out of range" but after it is receiving correctly the data and also the amount of data received is correct. I think it may crash after some time. Here i show the call to recvfrom:
int dataRCV = -55;
dataRCV = recvfrom ( sockfd2, data_CPV, sizeData_CPV, 0, (struct sockaddr*)&client_addr2,&client_addresslen2);
fprintf(%i %s, dataRCV,sterror(errno));
Thanks
recvfrom() returns the number of bytes read, not an error code. If recvfrom() fails, it will return -1 and errno will report the actual error code.
int dataRCV = recvfrom ( sockfd2, data_CPV, sizeData_CPV, 0, (struct sockaddr*)&client_addr2, &client_addresslen2);
if (dataRCV == -1)
fprintf(%i %s, errno, sterror(errno));
So if dataRCV is being set to 34 then recvfrom() has successfully read 34 bytes, not failed.
I am currently searching for the specification of the WLAN protocoll to get OBDII data. There are some ELM327 similar adapter on the market which enables iPhone to connect to a OBDII interface with WLAN. This because Bluetooth serial port is scrambled because of the accessories interface. Other programs like Torque for android can also use this communication protocol. However I did not find the specs for creating a network client.
Any help is welcomed,
Thanks
Ok, after some more research, I found two sources:
Michael Gile has an open source library for iOS devices, meant for communicating with OBDII WiFi as well as Bluetooth devices.
PLX devices (creators of the KiWi) have a description how to communicate with the KiWi. The description is too large to include here, but it boils down to:
Connect using WiFi (sockets)
Wait until the device returns >
Issue command and await response
Requesting information can be done by sending a command in this format (ASCII characters):
MM PP\r
where MM is the test mode, PP is the PID, and \r is a carriage return (hex: 0x0d). All whitespace characters are ignored by the Kiwi. *Test modes 03 and 04 do not require a PID value.
The 'test modes' that are spoken of, are the ten diagnostic modes as defined in the SAE J1979 standard:
Test mode Description
01 Show current data
02 Show freeze frame data
03 Show diagnostic trouble codes
04 Clear trouble codes and stored values
05 Test results, oxygen sensors
06 Test results, non-continuously monitored
07 Show 'pending' trouble codes
08 Special control mode
09 Request vehicle information
0A Request permanent trouble codes
The PID values are the codes for the sensors in the car. A (non-exhaustive)list of possible PID values is on Wikipedia.
here what i do in C and socket:
int sockfd = 0, n = 0;
char recvBuff[1024];
struct sockaddr_in serv_addr;
char *ip = "192.168.0.10";
char str [128];
int i;
memset(recvBuff, '0',sizeof(recvBuff));
if((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
{
printf("\n Error : Could not create socket \n");
return 1;
}
memset(&serv_addr, '0', sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(35000);
if(inet_pton(AF_INET, ip, &serv_addr.sin_addr)<=0)
{
printf("\n inet_pton error occured\n");
return 1;
}
if( connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0)
{
printf("\n Error : Connect Failed \n");
return 1;
}
printf ("reading...\n");
strcpy (str,"AT Z\x0d");
sleep(2);
write (sockfd, str, strlen (str));
while ( (n = read(sockfd, recvBuff, sizeof(recvBuff)-1)) > 0)
{
recvBuff[n] = 0;
printf ("received: ");
if(fputs(recvBuff, stdout) == EOF)
{
printf("\n Error : Fputs error\n");
}
printf ("\r\ntype: ");
fgets (str, sizeof (str), stdin);
i = strlen (str);
if (str [i-1] == 0x0a)
str [i-1] = 0;
strcat (str, "\x0d");
write (sockfd, str, strlen (str));
printf ("\r\n");
}
type 1 or 2 enter, you should see the prompt: ELM327
then after that, type whatever you want, for ex.: AT RV (will show voltage)
then use this pdf for all code:
https://www.obd-2.de/carcode/dl/ELM327DS.pdf
Have a look at ELM327 datasheet
Wifi dongles transparently bind the ELM327 RS232 port to a TCP server.
There's not really a WIFI protocol. You can use the ELM327 protocol via a raw TCP connection instead.
You can sent AT commands and OBD2 commands known as PID's with the telnet command:
telnet 192.168.0.1 35000
On succesful connection you can try to send:
AT Z
and the server should respond with "ELM327" and a version number.
I am writing an application which is continuously sending and receiving data. My initial send/receive is running successfully but when I am expecting data of size 512 bytes in the recvfrom I get its return value as -1 which is "Resource temporarily unavailable." and errno is set to EAGAIN. If I use a blocking call i.e. without Timeout the application just hangs in recvfrom. Is there any max limit on recvfrom on iPhone? Below is the function which receives data from the server. I am unable to figure out what can be going wrong.
{ struct timeval tv;
tv.tv_sec = 3;
tv.tv_usec = 100000;
setsockopt (mSock, SOL_SOCKET, SO_RCVTIMEO, (char *)&tv, sizeof tv);
NSLog(#"Receiving.. sock:%d",mSock);
recvBuff = (unsigned char *)malloc(1024);
if(recvBuff == NULL)
NSLog(#"Cannot allocate memory to recvBuff");
fromlen = sizeof(struct sockaddr_in);
n = recvfrom(mSock,recvBuff,1024,0,(struct sockaddr *)&from, &fromlen);
if (n == -1) {
[self error:#"Recv From"];
return;
}
else
{
NSLog(#"Recv Addr: %s Recv Port: %d",inet_ntoa(from.sin_addr), ntohs(from.sin_port));
strIPAddr = [[NSString alloc] initWithFormat:#"%s",inet_ntoa(from.sin_addr)];
portNumber = ntohs(from.sin_port);
lIPAddr = [KDefine StrIpToLong:strIPAddr];
write(1,recvBuff,n);
bcopy(recvBuff, data, n);
actualRecvBytes = n;
free(recvBuff);
}
}
Read the manpage:
If no messages are available at the socket, the receive call waits for a message to arrive, unless the socket is nonblocking (see fcntl(2)) in which case the value -1 is returned and the external variable errno set to EAGAIN.
I was writing a UDP application and think I came across a similar issue. Peter Hosey is correct in stating that the given result of recvfrom means that there is no data to be read; but you were wondering, how can there be no data?
If you are sending several UDP datagrams at a time from some host to your iphone, some of those datagrams may be discarded because the receive buffer size (on the iphone) is not large enough to accommodate that much data at once.
The robust way to fix the problem is to implement a feature that allows your application to request a retransmission of missing datagrams. A not as robust solution (that doesn't solve all the issues that the robust solution does) is to simply increase the receive buffer size using setsockopt(2).
The buffer size adjustment can be done as follows:
int rcvbuf_size = 128 * 1024; // That's 128Kb of buffer space.
if (setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF,
&rcvbuf_size, sizeof(rcvbuf_size)) == -1) {
// put your error handling here...
}
You may have to play around with buffer size to find what's optimal for your application.
For me it was a casting issue. Essentially a was assigning the returned value to an int instead of size_t
int rtn = recvfrom(sockfd,... // wrong
instead of:
size_t rtn = recvfrom(sockfd,...// correct