find position of image surranded by black area - matlab

There is an image, surrounded by black region, I would like to find the exact locaton of this image (which is surrounded by black region). I mean the coordinates of four corners of this image. Thanks.

You could apply a second derivative mask on your image which will then accurately pick up the points at which the colour goes from black to the content of the picture. You can then extract the first and last row and column each and you've got your coordinates.

If you are in matlab:
Mask out the black area. Either try:
Image = logical(Image)
Or find the intensity of a black voxel (probably zero) and say:
Image = ind2sub(size(Image), find(Image ~= blackPixelIntensity))
Once you have the binary non-black part of the image (so just the object and not the background), you just want to find the min, max corners of each voxel. Say:
[x y] = ind2sub(size(Image), find(Image ~= 0))
c1 = [min(x) min(y)]
c2 = [max(x) min(y)]
c3 = [max(x) max(y)]
c4 = [min(x) min(y)]
Where c1,...,c4 are your corners :)
Lemme know about any syntax error as I don't have access to matlab atm.
tylerthemiler
Edit: if you simply want the entire perimeter of the non-black part of the image, just do whichever of the first two lines of code above works, and then say:
Imperim = bwperim(Image)
Edit2: Note that Image is the 2D array, you can use whatever you want to load in the jpg :P

Related

face detection and make it blur

I am having trouble understanding the code about the Matlab
a = imread('Untitled2.png');
faceDetector = vision.CascadeObjectDetector;
bbox=step(faceDetector,a);
for j=1:size(bbox)
xbox=bbox(j,:);
subImage = imcrop(a, xbox);
H = fspecial('disk',10);
blurred = imfilter(subImage,H);
a(xbox(2):xbox(2)+xbox(4),xbox(1):xbox(1)+xbox(3),1:end) = blurred;
end
imshow(a);
Can anyone please kindly explain me that what is the for loop doing? I tried to use my own method to blur the face that I detected, but I just manage to crop out the face and blur the cropped image but I don't know how to put it back to original image. Then I tried to use the source code above I get from internet and the internet source code is able to blur the face and I can't understand the for loop logic. Kindly please explain to me, T^T.
Thanks.
As you can see there :
BBOX = step(detector,I) returns BBOX, an M-by-4 matrix defining M bounding boxes containing the detected objects. This method performs multiscale object detection on the input image, I. Each row of the output matrix, BBOX, contains a four-element vector, [x y width height], that specifies in pixels, the upper-left corner and size of a bounding box. The input image I, must be a grayscale or truecolor (RGB) image.
Are you sure that it's j=1:size(bbox) and not j=1:size(bbox,1) in the code?
Basically, The definition of BBox speaks by itself. The loop just iterates over all the boxes detected..
You then extract the informations about the jth box.
Then you extract the subImage given the position and size of xbox (xbox is a vector containing [x y width height]).
Then you define you filter.
Then you blur your subImage.
Then you override you image a with the blurred subimage using the informations in xbox.
EDIT : If you've already suceeded in blurring the cropped image, you just need to override you input image with your blurred image!

How to determine Boundary Cut Utilization MATLAB?

Working on 2D Rectangular Nesting. Need to find the utilization percentage of the material. Assuming i have the length, breadth, left-bottom position of each rectangle. What is the best way to determine the Boundary-Cut Utilization?
Objective:- To find the AREA under the RED Line.
Sample images attached to depict what i have done and what i need.
What i have done
what i need
Another Example image of rectangles packed with allowance
If you're interested in determining the total "area" underneath the red line, one suggestion I have is if you have access to the Image Processing Toolbox, simply create a binary image where we draw all of the rectangles on the image at once, fill all of the holes, then to determine the area, just determine the total sum of all of the binary "pixels" in the image. You said you have the (x,y) positions of the bottom-left corner of each rectangle, as well as the width and height of each rectangle. To make this compatible in an image context, the y axis is usually flipped so that the top-left corner of the space is the origin instead of the bottom-left. However, this shouldn't affect our analysis as we are simply reflecting the whole 2D space downwards.
Therefore, I would start with a blank image that is the same size as the grid you are dealing with, then writing a loop that simply sets a rectangular grid of coordinates to true for each rectangle you have. After, use imfill to fill in any of the holes in the image, then calculate the total sum of the pixels to get the area. The definition of a hole in an image processing context is any black pixels that are completely surrounded by white pixels. Therefore, should we have gaps that are surrounded by white pixels, these will get filled in with white.
Therefore, assuming that we have four separate variables of x, y, width and height that are N elements long, where N is the number of rectangles you have, do something like this:
N = numel(x); %// Determine total number of rectangles
rows = 100; cols = 200; %// Define dimensions of grid here
im = false(rows, cols); %// Declare blank image
%// For each rectangle we have...
for idx = 1 : N
%// Set interior of rectangle at location all to true
im(y(idx)+1:y(idx)+height(idx), x(idx)+1:x(idx)+width(idx)) = true;
end
%// Fill in the holes
im_filled = imfill(im, 'holes');
%// Determine total area
ar = sum(im_filled(:));
The indexing in the for loop:
im(y(idx)+1:y(idx)+height(idx), x(idx)+1:x(idx)+width(idx)) = true;
Is a bit tricky to deal with. Bear in mind that I'm assuming that y accesses the rows of the image and x accesses the columns. I'm also assuming that x and y are 0-based, so the origin is at (0,0). Because we access arrays and matrices in MATLAB starting at 1, we need to offset the coordinates by 1. Now, the beginning index for the row starts from y(idx)+1. We end at y(idx) + height(idx) because we technically start at y(idx)+1 but then we need to go up to height(idx) but then we also subtract by 1 as your coordinates begin at 0. Take for example a line with the width of 20, from x = 0 to x = 19. This width is 20, but we draw from 0, up to 20-1 which is 19. Because of the indexing starting at 1 for MATLAB, and the subtraction of 1 due to the 0 indexing, the +1 and -1 cancel, which is why we are just left with y(idx) + height(idx). The same can be said with the x coordinate and the width.
Once we draw all of the rectangles in the image, we use imfill to fill up the holes, then we can sum up the total area by just unrolling the whole image into a single vector and invoking sum. This should (hopefully) get what you need.
Now, if you want to find the area without the filled in holes (I suspect this is what you actually need), then you can skip the imfill step. Simply apply the sum on the im, instead of im_filled, and so:
ar = sum(im(:));
This will sum up all of the "white" pixels in the image, which is effectively the area. I'm not sure what you're actually after, so use one or the other depending on your needs.
Boundary-Cut Area without using Image Processing Toolbox.
The Detailed question description and answer could be found here
This solution is applicable only to Rectangular parts.

Separate two overlapping circles in an image using MATLAB

How do I separate the two connected circles in the image below, using MATLAB? I have tried using imerode, but this does not give good results. Eroding does not work, because in order to erode enough to separate the circles, the lines disappear or become mangled. In other starting pictures, a circle and a line overlap, so isolating the overlapping objects won't work either.
The image shows objects identified by bwboundaries, each object painted a different color. As you can see, the two light blue circles are joined, and I want to disjoin them, producing two separate circles. Thanks
I would recommend you use the Circular Hough Transform through imfindcircles. However, you need version 8 of the Image Processing Toolbox, which was available from version R2012a and onwards. If you don't have this, then unfortunately this won't work :(... but let's go with the assumption that you do have it. However, if you are using something older than R2012a, Dev-iL in his/her comment above linked to some code on MATLAB's File Exchange on an implementation of this, most likely created before the Circular Hough Transform was available: http://www.mathworks.com/matlabcentral/fileexchange/9168-detect-circles-with-various-radii-in-grayscale-image-via-hough-transform/
This is a special case of the Hough Transform where you are trying to find circles in your image rather than lines. The beauty with this is that you are able to find circles even when the circle is partially completed or overlapping.
I'm going to take the image that you provided above and do some post-processing on it. I'm going to convert the image to binary, and remove the border, which is white and contains the title. I'm also going to fill in any holes that result so that all of the objects are filled in with solid white. There is also some residual quantization noise after I do this step, so I'm going to a small opening with a 3 x 3 square element. After, I'm going to close the shapes with a 3 x 3 square element, as I see that there are noticeable gaps in the shapes. Therefore:
Therefore, directly reading in your image from where you've posted it:
im = imread('http://s29.postimg.org/spkab8oef/image.jpg'); %// Read in the image
im_gray = im2double(rgb2gray(im)); %// Convert to grayscale, then [0,1]
out = imclearborder(im_gray > 0.6); %// Threshold using 0.6, then clear the border
out = imfill(out, 'holes'); %// Fill in the holes
out = imopen(out, strel('square', 3));
out = imclose(out, strel('square', 3));
This is the image I get:
Now, apply the Circular Hough Transform. The general syntax for this is:
[centres, radii, metric] = imfindcircles(img, [start_radius, end_radius]);
img would be the binary image that contains your shapes, start_radius and end_radius would be the smallest and largest radius of the circles you want to find. The Circular Hough Transform is performed such that it will find any circles that are within this range (in pixels). The outputs are:
centres: Which returns the (x,y) positions of the centres of each circle detected
radii: The radius of each circle
metric: A measure of purity of the circle. Higher values mean that the shape is more probable to be a circle and vice-versa.
I searched for circles having a radius between 30 and 60 pixels. Therefore:
[centres, radii, metric] = imfindcircles(out, [30, 60]);
We can then demonstrate the detected circles, as well as the radii by a combination of plot and viscircles. Therefore:
imshow(out);
hold on;
plot(centres(:,1), centres(:,2), 'r*'); %// Plot centres
viscircles(centres, radii, 'EdgeColor', 'b'); %// Plot circles - Make edge blue
Here's the result:
As you can see, even with the overlapping circles towards the top, the Circular Hough Transform was able to detect two distinct circles in that shape.
Edit - November 16th, 2014
You wish to ensure that the objects are separated before you do bwboundaries. This is a bit tricky to do. The only way I can see you do this is if you don't even use bwboundaries at all and do this yourself. I'm assuming you'll want to analyze each shape's properties by themselves after all of this, so what I suggest you do is iterate through every circle you have, then place each circle on a new blank image, do a regionprops call on that shape, then append it to a separate array. You can also keep track of all of the circles by having a separate array that adds the circles one at a time to this array.
Once you've finished with all of the circles, you'll have a structure array that contains all of the measured properties for all of the measured circles you have found. You would use the array that contains only the circles from above, then use these and remove them from the original image so you get just the lines. You'd then call one more regionprops on this image to get the information for the lines and append this to your final structure array.
Here's the first part of the procedure I outlined above:
num_circles = numel(radii); %// Get number of circles
struct_reg = []; %// Save the shape analysis per circle / line here
%// For creating our circle in the temporary image
[X,Y] = meshgrid(1:size(out,2), 1:size(out,1));
%// Storing all of our circles in this image
circles_img = false(size(out));
for idx = 1 : num_circles %// For each circle we have...
%// Place our circle inside a temporary image
r = radii(idx);
cx = centres(idx,1); cy = centres(idx,2);
tmp = (X - cx).^2 + (Y - cy).^2 <= r^2;
% // Save in master circle image
circles_img(tmp) = true;
%// Do regionprops on this image and save
struct_reg = [struct_reg; regionprops(tmp)];
end
The above code may be a bit hard to swallow, but let's go through it slowly. I first figure out how many circles we have, which is simply looking at how many radii we have detected. I keep a separate array called struct_reg that will append a regionprops struct for each circle and line we have in our image. I use meshgrid to determine the (X,Y) co-ordinates with respect to the image containing our shapes so that I can draw one circle onto a blank image at each iteration. To do this, you simply need to find the Euclidean distance with respect to the centre of each circle, and set the pixels to true only if that location has its distance less than r. After doing this operation, you will have created only one circle and filtered all of them out. You would then use regionprops on this circle, add it to our circles_img array, which will only contain the circles, then continue with the rest of the circles.
At this point, we will have saved all of our circles. This is what circles_img looks like so far:
You'll notice that the circles drawn are clean, but the actual circles in the original image are a bit jagged. If we tried to remove the circles with this clean image, you will get some residual pixels along the border and you won't completely remove the circles themselves. To illustrate what I mean, this is what your image looks like if I tried to remove the circles with circles_img by itself:
... not good, right?
If you want to completely remove the circles, then do a morphological reconstruction through imreconstruct where you can use this image as the seed image, and specify the original image to be what we're working on. The job of morphological reconstruction is essentially a flood fill. You specify seed pixels, and an image you want to work on, and the job of imreconstruct is from these seeds, flood fill with white until we reach the boundaries of the objects that the seed pixels resided in. Therefore:
out_circles = imreconstruct(circles_img, out);
Therefore, we get this for our final reconstructed circles image:
Great! Now, use this and remove the circles from the original image. Once you do this, run regionprops again on this final image and append to your struct_reg variable. Obviously, save a copy of the original image before doing this:
out_copy = out;
out_copy(out_circles) = false;
struct_reg = [struct_reg; regionprops(out_copy)];
Just for sake of argument, this is what the image looks like with the circles removed:
Now, we have analyzed all of our shapes. Bear in mind I did the full regionprops call because I don't know exactly what you want in your analysis... so I just decided to give you everything.
Hope this helps!
erosion is the way to go. You should probably use a larger structuring element.
How about
1 erode
2 detect your objects
3 dilate each object for itself using the same structuring element

How to identify boundaries of a binary image to crop in matlab?

How to identify boundaries of a binary image to crop in matlab?
ie. the input binary image has no noises. only has one black object in white background.
You can use the edge command in MATLAB.
E = edge(I);
I would be an input grayscale or binary image. This will return a binary image with only the edges.
This can provide further assistance:
http://www.mathworks.com/help/images/ref/edge.html
If your image is just black-and-white and has a single object, you can likely make use of the Flood fill algorithm, for which Matlab has built-in support!
Try the imfill function (ref).
This should give you the extents of the object, which would allow you to crop at will.
You can also invert the image, then do regionprops to extract all of the properties for separate objects. You need to invert the image as regionprops assumes that the objects are white while the background is black. A good thing about this approach is that it generalizes for multiple objects and you only need about a few lines of code to do it.
As an example, let's artificially create a circle in the centre of an image that is black on a white background as you have suggested. Let's assume this is also a binary image.
im = true(200, 200);
[X,Y] = meshgrid(1:200, 1:200);
ind = (X-100).^2 + (Y-100).^2 <= 1000;
im(ind) = false;
imshow(im);
This is what your circle will look like:
Now let's go ahead and invert this so that it's a white circle on black background:
imInvert = ~im;
imshow(imInvert);
This is what your inverted circle will look like:
Now, invoke regionprops to find properties of all of the objects in our image. In this case, there should only be one.
s = regionProps(imInvert, 'BoundingBox');
As such, s contains a structure that is 1 element long, and has a single field called BoundingBox. This field is a 4 element array that is structured in the following way:
[x y w h]
x denotes the column/vertical co-ordinate while y denotes the row/horizontal co-ordinate of the top-left corner of the bounding box. w,h are the width and height of the rectangle. Our output of the above code is:
s =
BoundingBox: [68.5000 68.5000 63 63]
This means that the top-left corner of our bounding box is located at (x,y) = (68.5,68.5), and has a width and height of 63 each. Therefore, the span of our bounding box goes from rows (68.5,131.5) and columns (68.5,131.5). To make sure that we have the right bounding box, you can draw a rectangle around our shape by using the rectangle command.
imshow(im);
rectangle('Position', s.BoundingBox);
This is what your image will look like with a rectangle drawn around the object. As you can see, the bounding box given from regionprops is the minimum spanning bounding box required to fully encapsulate the object.
If you wish to crop the object, you can do the following:
imCrop = imcrop(imInvert, s.BoundingBox);
This should give you the cropped image that is defined by the bounding box that we talked about earlier.
Hope this is what you're looking for. Good luck!

Matlab - How to manually trace a boundary of an object

I am trying to find and extract the boundary of a binary image in matlab, without using something like bwboundaries.
Is there a more manual way to do this, using loops maybe and changing the colour of the boundary pixels.
Any help would be appreciated.
Since it is binary so you can use two loop pairs.
-first ensure that image is binary.(just in case it is greyscale threshold it)
-use the first loop pair for height and one for width and trace any change i.e if a pixel is black and the next pixel is white draw that point onto a new mat.(i.e mark that point as 255 or of any colour you desire)
-Do the same for width and height and store it into another mat.
-Then add both the mats and average out the result.
This is the manual way and it may not be efficient.But it helps you modify the process to get you the exact edges.
(Source:I had used this technique for detecting perspective transformed rectangles containing bar code in java since canny edge used to give out too many edges due to bar code lines)
I don't understand what you mean by manual way. Is it mean pixel by pixel or anything else? Anyway try this example and fully explain your question that what you really want.
d1 = double(imread('cameraman.TIF'))./255; %# Load the image, scale from 0 to 1
subplot(2,2,1); imshow(d1); title('d1'); %# Plot the original image
d = edge(d1,'canny',.6); %# Perform Canny edge detection
subplot(2,2,2); imshow(d); title('d'); %# Plot the edges
ds = bwareaopen(d,40); %# Remove small edge objects
subplot(2,2,3); imshow(ds); title('ds'); %# Plot the remaining edges
iout = d1;
BW = ds;
iout(:,:,1) = iout; %# Initialize red color plane
iout(:,:,2) = iout(:,:,1); %# Initialize green color plane
iout(:,:,3) = iout(:,:,1); %# Initialize blue color plane
iout(:,:,2) = min(iout(:,:,2) + BW, 1.0); %# Add edges to green color plane
iout(:,:,3) = min(iout(:,:,3) + BW, 1.0); %# Add edges to blue color plane
subplot(2,2,4); imshow(iout); title('iout'); %# Plot the resulting image
you can also track boundary by using Blob method but it depend on your requirements.