I need to write MATLAB code that will integrate over a R^5 hypercube using Monte Carlo. I have a basic algorithm that works when I have a generic function. But the function I need to integrate is:
∫dA
A is an element of R^5.
If I had ∫f(x)dA then I think my algorithm would work.
Here is the algorithm:
% Writen by Jerome W Lindsey III
clear;
n = 10000;
% Make a matrix of the same dimension
% as the problem. Each row is a dimension
A = rand(5,n);
% Vector to contain the solution
B = zeros(1,n);
for k = 1:n
% insert the integrand here
% I don't know how to enter a function {f(1,n), f(2,n), … f(5n)} that
% will give me the proper solution
% I threw in a function that will spit out 5!
% because that is the correct solution.
B(k) = 1 / (2 * 3 * 4 * 5);
end
mean(B)
In any case, I think I understand what the intent here is, although it does seem like somewhat of a contrived exercise. Consider the problem of trying to find the area of a circle via MC, as discussed here. Here samples are being drawn from a unit square, and the function takes on the value 1 inside the circle and 0 outside. To find the volume of a cube in R^5, we could sample from something else that contains the cube and use an analogous procedure to compute the desired volume. Hopefully this is enough of a hint to make the rest of the implementation straightforward.
I'm guessing here a bit since the numbers you give as "correct" answer don't match to how you state the exercise (volume of unit hypercube is 1).
Given the result should be 1/120 - could it be that you are supposed to integrate the standard simplex in the hypercube?
The your function would be clear. f(x) = 1 if sum(x) < 1; 0 otherwise
%Question 2, problem set 1
% Writen by Jerome W Lindsey III
clear;
n = 10000;
% Make a matrix of the same dimension
% as the problem. Each row is a dimension
A = rand(5,n);
% Vector to contain the solution
B = zeros(1,n);
for k = 1:n
% insert the integrand here
% this bit of code works as the integrand
if sum(A(:,k)) < 1
B(k) = 1;
end
end
clear k;
clear A;
% Begin error estimation calculations
std_mc = std(B);
clear n;
clear B;
% using the error I calculate a new random
% vector of corect length
N_new = round(std_mc ^ 2 * 3.291 ^ 2 * 1000000);
A_new = rand(5, N_new);
B_new = zeros(1,N_new);
clear std_mc;
for k = 1:N_new
if sum(A_new(:,k)) < 1
B_new(k) = 1;
end
end
clear k;
clear A_new;
% collect descriptive statisitics
M_new = mean(B_new);
std_new = std(B_new);
MC_new_error_999 = std_new * 3.921 / sqrt(N_new);
clear N_new;
clear B_new;
clear std_new;
% Display Results
disp('Integral in question #2 is');
disp(M_new);
disp(' ');
disp('Monte Carlo Error');
disp(MC_new_error_999);
Related
The following is my code. I try to model PFR in Matlab using ode23s. It works well with one component irreversible reaction. But when extending more dependent variables, 'Matrix dimensions must agree' problem shows. Have no idea how to fix it. Is possible to use other software to solve similar problems?
Thank you.
function PFR_MA_length
clear all; clc; close all;
function dCdt = df(t,C)
dCdt = zeros(N,2);
dCddt = [0; -vo*diff(C(:,1))./diff(V)-(-kM*C(2:end,1).*C(2:end,2)-kS*C(2:end,1))];
dCmdt = [0; -vo*diff(C(:,2))./diff(V)-(-kM*C(2:end,1).*C(2:end,2))];
dCdt(:,1) = dCddt;
dCdt(:,2) = dCmdt;
end
kM = 1;
kS = 0.5; % assumptions of the rate constants
C0 = [2, 2]; % assumptions of the entering concentration
vo = 2; % volumetric flow rate
volume = 20; % total volume of reactor, spacetime = 10
N = 100; % number of points to discretize the reactor volume on
init = zeros(N,2); % Concentration in reactor at t = 0
init(1,:) = C0; % concentration at entrance
V = linspace(0,volume,N)'; % discretized volume elements, in column form
tspan = [0 20];
[t,C] = ode23s(#(t,C) df(t,C),tspan,init);
end
'''
You can put a break point on the line that computes dCddt and observe that the size of the matrices C and V are different.
>> size(C)
ans =
200 1
>> size(V)
ans =
100 1
The element-wise divide operation, ./, between these two variables would then result in the error that you mentioned.
Per ode23s's help, the output of the call to dCdt = df(t,C) needs to be a vector. However, you are returning a matrix of size 100x2. In the next call to the same function, ode32s converts it to a vector when computing the value of C, hence the size 200x1.
In the GNU octave interpretation of Matlab behavior, one has to explicitly make sure that the solver only sees flat one-dimensional state vectors. These have to be translated forward and back in the application of the model.
Explicitly reading the object A as flat array A(:) forgets the matrix dimension information, these can be added back with the reshape(A,m,n) command.
function dCdt = df(t,C)
C = reshape(C,N,2);
...
dCdt = dCdt(:);
end
...
[t,C] = ode45(#(t,C) df(t,C), tspan, init(:));
I'm new to this concept of parallel pooling on MATLAB (I'm using the version 2019 a) and coding. This code that I'm going to share with you was available on the net, with some few modifications that I've made it for my requirements.
Problem Statement: I'm having a non-linear system (Rossler equation) & I have to plot its Bifurcation diagram, I tried to do it normally using for loop but its computation time was too much and my computer got hanged several times, so I got an advice to parallel pool my code in order to come out of this problem. I tried to learn how to parallel pool using MATLAB on the net but still I'm not able to resolve my Issues as there are still some problems since there are 2 parfor loops in my code I'm having problems with Indexing and in assignment of the global parameter (Please note: This code is written for normal execution without using parallel pooling).
I'm attaching my code below here, please excuse if I've mentioned a lot many lines of codes.
clc;
a = 0.2; b = 0.2; global c;
crange = 1:0.05:90; % Range for parameter c
k = 0; tspan = 0:0.1:500; % Time interval for solving Rossler system
xmax = []; % A matrix for storing the sorted value of x1
for c = crange
f = #(t,x) [-x(2)-x(3); x(1)+a*x(2); b+x(3)*(x(1)-c)];
x0 = [1 1 0]; % initial condition for Rossler system
k = k + 1;
[t,x] = ode45(f,tspan,x0); % call ode() to solve Rossler system
count = find(t>100); % find all the t values which is >10
x = x(count,:);
j = 1;
n = length(x(:,1)); % find the length of vector x1(x in our problem)
for i=2 : n-1
% check for the min value in 1st column of sol matrix
if (x(i-1,1)+eps) < x(i,1) && x(i,1) > (x(i+1,1)+eps)
xmax(k,j)=x(i,1); % Sorting the values of x1 in increasing order
j=j+1;
end
end
% generating bifurcation map by plotting j-1 element of kth row each time
if j>1
plot(c,xmax(k,1:j-1),'k.','MarkerSize',1);
end
hold on;
index(k)=j-1;
end
xlabel('Bifuracation parameter c');
ylabel('x max');
title('Bifurcation diagram for c');
This can be made compatible with parfor by taking a few relatively simple steps. Firstly, parfor workers cannot produce on-screen graphics, so we need to change things to emit a result. In your case, this is not totally trivial since your primary result xmax is being assigned-to in a not-completely-uniform manner - you're assigning different numbers of elements on different loop iterations. Not only that, it appears not to be possible to predict up-front how many columns xmax needs.
Secondly, you need to make some minor changes to the loop iteration to be compatible with parfor, which requires consecutive integer loop iterates.
So, the major change is to have the loop write individual rows of results to a cell array I've called xmax_cell. Outside the parfor loop, it's trivial to convert this back to matrix form.
Putting all this together, we end up with this, which works correctly in R2019b as far as I can tell:
clc;
a = 0.2; b = 0.2;
crange = 1:0.05:90; % Range for parameter c
tspan = 0:0.1:500; % Time interval for solving Rossler system
% PARFOR loop outputs: a cell array of result rows ...
xmax_cell = cell(numel(crange), 1);
% ... and a track of the largest result row
maxNumCols = 0;
parfor k = 1:numel(crange)
c = crange(k);
f = #(t,x) [-x(2)-x(3); x(1)+a*x(2); b+x(3)*(x(1)-c)];
x0 = [1 1 0]; % initial condition for Rossler system
[t,x] = ode45(f,tspan,x0); % call ode() to solve Rossler system
count = find(t>100); % find all the t values which is >10
x = x(count,:);
j = 1;
n = length(x(:,1)); % find the length of vector x1(x in our problem)
this_xmax = [];
for i=2 : n-1
% check for the min value in 1st column of sol matrix
if (x(i-1,1)+eps) < x(i,1) && x(i,1) > (x(i+1,1)+eps)
this_xmax(j) = x(i,1);
j=j+1;
end
end
% Keep track of what's the maximum number of columns
maxNumCols = max(maxNumCols, numel(this_xmax));
% Store this row into the output cell array.
xmax_cell{k} = this_xmax;
end
% Fix up xmax - push each row into the resulting matrix.
xmax = NaN(numel(crange), maxNumCols);
for idx = 1:numel(crange)
this_max = xmax_cell{idx};
xmax(idx, 1:numel(this_max)) = this_max;
end
% Plot
plot(crange, xmax', 'k.', 'MarkerSize', 1)
xlabel('Bifuracation parameter c');
ylabel('x max');
title('Bifurcation diagram for c');
I want to replicate a figure from this article. More specifically, I want to replicate Figure number 4, which I believe is the representation of Equation 9.
So far I have come up with this code:
% implementing equation 9 and figure 4
step = 0.01; t = 1:step:3600;
d = 3; % dimension
N = 8000; % number of molecules
H = 0.01; % H = [0.01,0.1,1] is in mol/micrometer^3
H = H*6.02214078^5; % hence I scaled the Avogadro's number (right or wrong?)
D = 10; % diffusion coefficient in micrometer^2/sec
u(1) = 1./(1.^(d/2)); % inner function in equation 9; first pulse
for i = 2:numel(t)/1000
u(i) = u(i-1)+(1./(i.^(d/2))); % u-> the pulse number
lmda(i) = (1/(4*pi*D))*((N/(H)).*sum(u)).^(2/d);
end
figure;plot(lmda)
But I am not able to replicate it.
Equation 9
For details on the parameters, refer to the above code. The authors did mention that the summation in equation 9 is a Reimann Zeta series. Wonder if that has anything to do with the result?
Figure 4, which I am trying to replicate:
Could someone kindly tell me the mistake I am making?
P.s: This is not a homework.
Problem 1: You think you are scaling by Avogadro's number on this line
H = H*6.02214078^5;
In fact, you're scaling by approximately 7920=6.022^5. If you wanted to scale by the Avogadro number then you should do:
H = H * 6.02214078e23 % = 6.02214078 * 10^23 : the Avogadro number
Problem 2: You aren't plotting against t, you're plotting against the sample number which doesn't really make sense (unless your t happened to be in integer seconds). Remove the /1000 from your loop
for i = 2:numel(t)
% ...
end
% Then plot
plot(t, lmda)
At this stage we can see something is really wrong. Now that we're scaling by the correct Avo number, the orders of magnitude are way out. I suggest that you trust the H in figure 4 and the H in equation 9 are the same H, it would be very confusing if the author intended anything different!
On that basis, I would suggest you are using the wrong D, N, or time between pulses. I've set up the pulse timing a bit clearer in my code below. I've also streamlined your loop somewhat using vectorisation, and removed the H scaling.
If you tweak it so dtPulses=100 as well as D=100, then the plots are almost identical. You perhaps need to consider how these two numbers affect the result...
% implementing equation 9 and figure 4
d = 3; % dimension
N = 8000; % number of molecules
D = 100; % diffusion coefficient in micrometer^2/sec
dtPulses = 10; % Seconds between pulses
tPulses = 1:dtPulses:3600; % Time array to plot against
nt = numel(tPulses);
i = 1:nt; % pulse numbers
u = 1 ./ (i.^(d/2)); % inner function in equation 9: individual pulse
for k = 2:nt % Running sum
u(k) = u(k-1)+u(k);
end
% Now plot for different H (mol/micrometer^3)
H = [0.01, 0.1, 1];
figure; hold on; linestyles = {':k', '--k', '-k'};
for nH = 1:3
lmda = ((1/(4*pi*D))*(N/H(nH)).*u).^(2/d);
plot(tPulses, lmda, linestyles{nH}, 'linewidth', 2)
end
I have implemented a script that does constrained optimization for solving the optimal parameters of Support Vector Machines model. I noticed that my script for some reason gives inaccurate results (although very close to the real value). For example the typical situation is that the result of a calculation should be exactly 0, but instead it is something like
-1/18014398509481984 = -5.551115123125783e-17
This situation happens when I multiply matrices with vectors. What makes this also strange is that if I do the multiplications by hand in the command window in Matlab I get exactly 0 result.
Let me give an example: If I take the vectors Aq = [-1 -1 1 1] and x = [12/65 28/65 32/65 8/65]' I get exactly 0 result from their multiplication if I do this in the command window, as you can see in the picture below:
If on the other hand I do this in my function-script I don't get the result being 0 but rather the value -1/18014398509481984.
Here is the part of my script that is responsible for this multiplication (I've added the Aq and x into the script to show the contents of Aq and x as well):
disp('DOT PRODUCT OF ACTIVE SET AND NEW POINT: ')
Aq
x
Aq*x
Here is the result of the code above when run:
As you can see the value isn't exactly 0 even though it really should be. Note that this problem doesn't occur for all possible values of Aq and x. If Aq = [-1 -1 1 1] and x = [4/13 4/13 4/13 4/13] the result is exactly 0 as you can see below:
What is causing this inaccuracy? How can I fix this?
P.S. I didn't include my whole code because it's not very well documented and few hundred lines long, but I will if requested.
Thank you!
UPDATE: new test, by using Ander Biguri's advice:
UPDATE 2: THE CODE
function [weights, alphas, iters] = solveSVM(data, labels, C, e)
% FUNCTION [weights, alphas, iters] = solveSVM(data, labels, C, e)
%
% AUTHOR: jjepsuomi
%
% VERSION: 1.0
%
% DESCRIPTION:
% - This function will attempt to solve the optimal weights for a Support
% Vector Machines (SVM) model using active set method with gradient
% projection.
%
% INPUTS:
% "data" a n-by-m data matrix. The number of rows 'n' corresponds to the
% number of data points and the number of columns 'm' corresponds to the
% number of variables.
% "labels" a 1-by-n row vector of data labels from the set {-1,1}.
% "C" Box costraint upper limit. This will constrain the values of 'alphas'
% to the range 0 <= alphas <= C. If hard-margin SVM model is required set
% C=Inf.
% "e" a real value corresponding to the convergence criterion, that is if
% solution Xi and Xi-1 are within distance 'e' from each other stop the
% learning process, i.e. IF |F(Xi)-F(Xi-1)| < e ==> stop learning process.
%
% OUTPUTS:
% "weights" a vector corresponding to the optimal decision line parameters.
% "alphas" a vector of alpha-values corresponding to the optimal solution
% of the dual optimization problem of SVM.
% "iters" number of iterations until learning stopped.
%
% EXAMPLE USAGE 1:
%
% 'Hard-margin SVM':
%
% data = [0 0;2 2;2 0;3 0];
% labels = [-1 -1 1 1];
% [weights, alphas, iters] = solveSVM(data, labels, Inf, 10^-100)
%
% EXAMPLE USAGE 2:
%
% 'Soft-margin SVM':
%
% data = [0 0;2 2;2 0;3 0];
% labels = [-1 -1 1 1];
% [weights, alphas, iters] = solveSVM(data, labels, 0.8, 10^-100)
% STEP 1: INITIALIZATION OF THE PROBLEM
format long
% Calculate linear kernel matrix
L = kron(labels', labels);
K = data*data';
% Hessian matrix
Qd = L.*K;
% The minimization function
L = #(a) (1/2)*a'*Qd*a - ones(1, length(a))*a;
% Gradient of the minimizable function
gL = #(a) a'*Qd - ones(1, length(a));
% STEP 2: THE LEARNING PROCESS, ACTIVE SET WITH GRADIENT PROJECTION
% Initial feasible solution (required by gradient projection)
x = zeros(length(labels), 1);
iters = 1;
optfound = 0;
while optfound == 0 % criterion met
% Negative of the gradient at initial solution
g = -gL(x);
% Set the active set and projection matrix
Aq = labels; % In plane y^Tx = 0
P = eye(length(x))-Aq'*inv(Aq*Aq')*Aq; % In plane projection
% Values smaller than 'eps' are changed into 0
P(find(abs(P-0) < eps)) = 0;
d = P*g'; % Projection onto plane
if ~isempty(find(x==0 | x==C)) % Constraints active?
acinds = find(x==0 | x==C);
for i = 1:length(acinds)
if (x(acinds(i)) == 0 && d(acinds(i)) < 0) || x(acinds(i)) == C && d(acinds(i)) > 0
% Make the constraint vector
constr = zeros(1,length(x));
constr(acinds(i)) = 1;
Aq = [Aq; constr];
end
end
% Update the projection matrix
P = eye(length(x))-Aq'*inv(Aq*Aq')*Aq; % In plane / box projection
% Values smaller than 'eps' are changed into 0
P(find(abs(P-0) < eps)) = 0;
d = P*g'; % Projection onto plane / border
end
%%%% DISPLAY INFORMATION, THIS PART IS NOT NECESSAY, ONLY FOR DEBUGGING
if Aq*x ~= 0
disp('ACTIVE SET CONSTRAINTS Aq :')
Aq
disp('CURRENT SOLUTION x :')
x
disp('MULTIPLICATION OF Aq and x')
Aq*x
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Values smaller than 'eps' are changed into 0
d(find(abs(d-0) < eps)) = 0;
if ~isempty(find(d~=0)) && rank(P) < length(x) % Line search for optimal lambda
lopt = ((g*d)/(d'*Qd*d));
lmax = inf;
for i = 1:length(x)
if d(i) < 0 && -x(i) ~= 0 && -x(i)/d(i) <= lmax
lmax = -x(i)/d(i);
elseif d(i) > 0 && (C-x(i))/d(i) <= lmax
lmax = (C-x(i))/d(i);
end
end
lambda = max(0, min([lopt, lmax]));
if abs(lambda) < eps
lambda = 0;
end
xo = x;
x = x + lambda*d;
iters = iters + 1;
end
% Check whether search direction is 0-vector or 'e'-criterion met.
if isempty(find(d~=0)) || abs(L(x)-L(xo)) < e
optfound = 1;
end
end
%%% STEP 3: GET THE WEIGHTS
alphas = x;
w = zeros(1, length(data(1,:)));
for i = 1:size(data,1)
w = w + labels(i)*alphas(i)*data(i,:);
end
svinds = find(alphas>0);
svind = svinds(1);
b = 1/labels(svind) - w*data(svind, :)';
%%% STEP 4: OPTIMALITY CHECK, KKT conditions. See KKT-conditions for reference.
weights = [b; w'];
datadim = length(data(1,:));
Q = [zeros(1,datadim+1); zeros(datadim, 1), eye(datadim)];
A = [ones(size(data,1), 1), data];
for i = 1:length(labels)
A(i,:) = A(i,:)*labels(i);
end
LagDuG = Q*weights - A'*alphas;
Ac = A*weights - ones(length(labels),1);
alpA = alphas.*Ac;
LagDuG(any(abs(LagDuG-0) < 10^-14)) = 0;
if ~any(alphas < 0) && all(LagDuG == zeros(datadim+1,1)) && all(abs(Ac) >= 0) && all(abs(alpA) < 10^-6)
disp('Optimal found, Karush-Kuhn-Tucker conditions satisfied.')
else
disp('Optimal not found, Karush-Kuhn-Tucker conditions not satisfied.')
end
% VISUALIZATION FOR 2D-CASE
if size(data, 2) == 2
pinds = find(labels > 0);
ninds = find(labels < 0);
plot(data(pinds, 1), data(pinds, 2), 'o', 'MarkerFaceColor', 'red', 'MarkerEdgeColor', 'black')
hold on
plot(data(ninds, 1), data(ninds, 2), 'o', 'MarkerFaceColor', 'blue', 'MarkerEdgeColor', 'black')
Xb = min(data(:,1))-1;
Xe = max(data(:,1))+1;
Yb = -(b+w(1)*Xb)/w(2);
Ye = -(b+w(1)*Xe)/w(2);
lineh = plot([Xb Xe], [Yb Ye], 'LineWidth', 2);
supvh = plot(data(find(alphas~=0), 1), data(find(alphas~=0), 2), 'g.');
legend([lineh, supvh], 'Decision boundary', 'Support vectors');
hold off
end
NOTE:
If you run the EXAMPLE 1, you should get an output starting with the following:
As you can see, the multiplication between Aq and x don't produce value 0, even though they should. This is not a bad thing in this particular example, but if I have more data points with lots of decimals in them this inaccuracy becomes bigger and bigger problem, because the calculations are not exact. This is bad for example when I'm searching for a new direction vector when I'm moving towards the optimal solution in gradient projection method. The search direction isn't exactly the correct direction, but close to it. This is why I want the exactly correct values...is this possible?
I wonder if the decimals in the data points have something to do with the accuracy of my results. See the picture below:
So the question is: Is this caused by the data or is there something wrong in the optimization procedure...
Do you use format function inside your script? It looks like you used somewhere format rat.
You can always use matlab eps function, that returns precision that is used inside matlab. The absolute value of -1/18014398509481984 is smaller that this, according to my Matlab R2014B:
format long
a = abs(-1/18014398509481984)
b = eps
a < b
This basically means that the result is zero (but matlab stopped calculations because according to eps value, the result was just fine).
Otherwise you can just use format long inside your script before the calculation.
Edit
I see inv function inside your code, try replacing it with \ operator (mldivide). The results from it will be more accurate as it uses Gaussian elimination, without forming the inverse.
The inv documentation states:
In practice, it is seldom necessary to form the explicit inverse of a
matrix. A frequent misuse of inv arises when solving the system of
linear equations Ax = b. One way to solve this is with x = inv(A)*b. A
better way, from both an execution time and numerical accuracy
standpoint, is to use the matrix division operator x = A\b. This
produces the solution using Gaussian elimination, without forming the
inverse.
With the provided code, this is how I tested:
I added a break-point on the following code:
if Aq*x ~= 0
disp('ACTIVE SET CONSTRAINTS Aq :')
Aq
disp('CURRENT SOLUTION x :')
x
disp('MULTIPLICATION OF Aq and x')
Aq*x
end
When the if branch was taken, I typed at console:
K>> format rat; disp(x);
12/65
28/65
32/65
8/65
K>> disp(x == [12/65; 28/65; 32/65; 8/65]);
0
1
0
0
K>> format('long'); disp(max(abs(x - [12/65; 28/65; 32/65; 8/65])));
1.387778780781446e-17
K>> disp(eps(8/65));
1.387778780781446e-17
This suggests that this is a displaying problem: the format rat deliberately uses small integers for expressing the value, on the expense of precision. Apparently, the true value of x(4) is the next one to 8/65 than can be possibly put in double format.
So, this begs the question: are you sure that numeric convergence depends on flipping the least significant bit in a double precision value?
I have a function f(t) and want to get all the points where it intersects y=-1 and y=1 in the range 0 to 6*pi.
The only way I cold do it is ploting them and trying to locate the x-axis pt where f(t) meets the y=1 graph. But this doesn't give me the exact point. Instead gives me a near by value.
clear;
clc;
f=#(t) (9*(sin(t))/t) + cos(t);
fplot(f,[0 6*pi]);
hold on; plot(0:0.01:6*pi,1,'r-');
plot(0:0.01:6*pi,-1,'r-');
x=0:0.2:6*pi; h=cos(x); plot(x,h,':')
You are essentially trying to solve a system of two equations, at least in general. For the simple case where one of the equations is a constant, thus y = 1, we can solve it using fzero. Of course, it is always a good idea to use graphical means to find a good starting point.
f=#(t) (9*(sin(t))./t) + cos(t);
y0 = 1;
The idea is if you want to find where the two curves intersect, is to subtract them, then look for a root of the resulting difference.
(By the way, note that I used ./ for the divide, so that MATLAB won't have problem for vector or array input in f. This is a good habit to develop.)
Note that f(t) is not strictly defined in MATLAB at zero, since it results in 0/0. (A limit exists of course for the function, and can be evaluated using my limest tool.)
limest(f,0)
ans =
10
Since I know the solution is not at 0, I'll just use the fzero bounds from looking there for a root.
format long g
fzero(#(t) f(t) - y0,[eps,6*pi])
ans =
2.58268206208857
But is this the only root? What if we have two or more solutions? Finding all the roots of a completely general function can be a nasty problem, as some roots may be infinitely close together, or there may be infinitely many roots.
One idea is to use a tool that knows how to look for multiple solutions to a problem. Again, found on the file exchange, we can use research.
y0 = 1;
rmsearch(#(t) f(t) - y0,'fzero',1,eps,6*pi)
ans =
2.58268206208857
6.28318530717959
7.97464518075547
12.5663706143592
13.7270312712311
y0 = -1;
rmsearch(#(t) f(t) - y0,'fzero',1,eps,6*pi)
ans =
3.14159265358979
5.23030501095915
9.42477796076938
10.8130654321854
15.707963267949
16.6967239156574
Try this:
y = fplot(f,[0 6*pi]);
now you can analyse y for the value you are looking for.
[x,y] = fplot(f,[0 6*pi]);
[~,i] = min(abs(y-1));
point = x(i);
this will find one, nearest crossing point. Otherwhise you going through the vector with for
Here is the variant with for I often use:
clear;
clc;
f=#(t) (9*(sin(t))/t) + cos(t);
fplot(f,[0 6*pi]);
[fx,fy] = fplot(f,[0 6*pi]);
hold on; plot(0:0.01:6*pi,1,'r-');
plot(0:0.01:6*pi,-1,'r-');
x=0:0.2:6*pi; h=cos(x); plot(x,h,':')
k = 1; % rising
kt = 1; % rising
pn = 0; % number of crossings
fy = abs(fy-1);
for n = 2:length(fx)
if fy(n-1)>fy(n)
k = 0; % falling
else
k = 1; % rising
end
if k==1 && kt ==0 % change from falling to rising
pn = pn +1;
p(pn) = fx(n);
end
kt = k;
end
You can make this faster, if you make an mex-file of this...