I have one file with the following code:
function fx=ff(x)
fx=x;
I have another file with the following code:
function g = LaplaceTransform(s,N)
g = ff(x)*exp(-s*x);
a=0;
b=1;
If=0;
h=(b-a)/N;
If=If+g(a)*h/2+g(b)*h/2;
for i=1:(N-1)
If=If+g(a+h*i)*h;
end;
If
Whenever I run the second file, I get the following error:
Undefined function or variable 'x'.
What I am trying to do is integrate the function g between 0 and 1 using trapezoidal approximations. However, I am unsure how to deal with x and that is clearly causing problems as can be seen with the error.
Any help would be great. Thanks.
Looks like what you're trying to do is create a function in the variable g. That is, you want the first line to mean,
"Let g(x) be a function that is calculated like this: ff(x)*exp(-s*x)",
rather than
"calculate the value of ff(x)*exp(-s*x) and put the result in g".
Solution
You can create a subfunction for this
function result = g(x)
result = ff(x) * exp(-s * x);
end
Or you can create an anonymous function
g = #(x) ff(x) * exp(-s * x);
Then you can use g(a), g(b), etc to calculate what you want.
You can also use the TRAPZ function to perform trapezoidal numerical integration. Here is an example:
%# parameters
a = 0; b = 1;
N = 100; s = 1;
f = #(x) x;
%# integration
X = linspace(a,b,N);
Y = f(X).*exp(-s*X);
If = trapz(X,Y) %# value returned: 0.26423
%# plot
area(X,Y, 'FaceColor',[.5 .8 .9], 'EdgeColor','b', 'LineWidth',2)
grid on, set(gca, 'Layer','top', 'XLim',[a-0.5 b+0.5])
title('$\int_0^1 f(x) e^{-sx} \,dx$', 'Interpreter','latex', 'FontSize',14)
The error message here is about as self-explanatory as it gets. You aren't defining a variable called x, so when you reference it on the first line of your function, MATLAB doesn't know what to use. You need to either define it in the function before referencing it, pass it into the function, or define it somewhere further up the stack so that it will be accessible when you call LaplaceTransform.
Since you're trying to numerically integrate with respect to x, I'm guessing you want x to take on values evenly spaced on your domain [0,1]. You could accomplish this using e.g.
x = linspace(a,b,N);
EDIT: There are a couple of other problems here: first, when you define g, you need to use .* instead of * to multiply the elements in the arrays (by default MATLAB interprets multiplication as matrix multiplication). Second, your calls g(a) and g(b) are treating g as a function instead of as an array of function values. This is something that takes some getting used to in MATLAB; instead of g(a), you really want the first element of the vector g, which is given by g(1). Similarly, instead of g(b), you want the last element of g, which is given by g(length(g)) or g(end). If this doesn't make sense, I'd suggest looking at a basic MATLAB tutorial to get a handle on how vectors and functions are used.
Related
I am supposed to use a 2D Gaussian function which will have the following mathematical expression ๐บ(๐ฅ) = ๐^(โ(๐ฅโ๐)^2/๐ ๐ก๐^2) and plot a graph of the function. ยต is the mean and std stands for the standard deviation, by the way. How would a write code to plug in values to the function and output the values of G(x) and x in to an array to be plotted?
I've tried looking at older code I've done for previous graph's I've made, but this function is much more complex than I've ever done.
The following anonymous function would work in your case
G = #(x,mu,sigma) exp(-((x-mu).^2)/(sigma^2));
x=-10:0.01:10;
plot(x,G(x,0.2,0.4));
Generically speaking, use the following method to call a function and return values:
Main Script
clc; clear; close all;
x = 0;
y = add_x(x);
Function Call
function y = add_x(x)
y = x+1;
end
Read more about function calling in the MATLAB Documentation.
function [y] = sumsqu(xx)
d = length(xx);
sum = 0;
for ii = 1:d
xi = xx(ii);
sum = sum + ii*xi^2;
end
y = sum;
end
Above is the code for d variables. Whenever I call the function I get the sum as expected. Now I want to find the numerical gradient of the function. But since the function is returning a scalar value, gradient returns 0 obviously. What can I do so that gradient first evaluates in its variable form then return an array corresponding to [x1 x2 x3....xd]?
As you can see in the picture, I want it in that order. And I also want d as a variable so that code can be generic. Hope you understood my problem.
Your function does exactly this:
y = sum(xx.^2 .* (1:numel(xx)));
The derivatives then are:
y = 2*xx .* (1:numel(xx));
(according to the hand-written equations).
You should avoid using sum as a variable name, you can see above that it is an important function, if you assign a value to sum, you hide the function and can no longer use it.
For your specific function, you can calculate the gradient analytically like:
g = 2*(1:length(xx)).*xx;
You can also replace the call for length(xx) by d if it is given.
I have written a function called "tension.m" in which I have used if else condition as shown below.
function [T,T_earlyvalues,T_latervalues] = tension(u,sigma,G,N,K)
%the values of sigma,G,N,K can be taken arbitrary.
sigma=2; G=3;N=8;K=1; v=1;
w=2.2;
if u<w
T =v*sqrt(sigma+G^2/(N-K));
T_earlyvalues=T;
else
T=(2*v)*sqrt(sigma+G^2/(N+K));
T_latervalues=T;
end
Now in another script "myvalues.m" I need to call T_earlyvalues and T_latervalues separately.
%have some coding before this part
sigma0=2400; lambda=1.3; v=2; sigma=2; G=3;N=8;K=1;
u=0:0.01:5;
T=tension(u,sigma,G,N,K);
T_earlyvalues=tension(u,sigma,G,N,K);
T_latervalues=tension(u,sigma,G,N,K);
deltaA=T_earlyvalues*sigma0*pi;
deltaB=T_latervalue*lambda*pi/2;
%have some coding after this part
How could I call the said values which are under if-else statement from tension.m function to myvalues.m script?
You have defined the tension function such that it returns three outputs.
If you call that function by requiring only one output, the function returns the first value, in your case, T
This implies that
T=tension(u,sigma,G,N,K);
shoud work since T is the first output parameter
T_earlyvalues=tension(u,sigma,G,N,K);
T_latervalues=tension(u,sigma,G,N,K);
are not working, since, actually tension returns the first value (T, whjikle you are expecting the second and the third respectively.)
You can cahnge the two above calls this way:
[~,T_earlyvalues,~]=tension(u,sigma,G,N,K);
[~,~,T_latervalues]=tension(u,sigma,G,N,K);
The ~ allows to avoid the function return the output paraemter.
You can find additional information here
Notice that in your function T_earlyvalue is not set in the else block, same for T_latervalue in the if block.
This will generate an error such as
Output argument T_earlyvalue (and maybe others) not assigned during call to tension
or
Output argument T_latervalues (and maybe others) not assigned during call to tension
You can initialize the output values to default values, at the beginning of the function, for example:
T=NaN
T_earlyvalue=NaN
T_latervalues=NaN
You can then use these special values (or any other you want to use) to trace, for example, if the if block has been executed or the else.
There seem to be a number of issues here, not the least of which is some confusion about how output argument lists work when defining or calling functions. I suggest starting with this documentation to better understand how to create and call functions. However, this issue is somewhat moot because the larger problem is how you are using your conditional statement...
You are trying to pass a vector u to your function tension, and from what I can tell you want to return a vector T, where the values of T for u < w are computed with a different formula than the values of T for u >= w. Your conditional statement will not accomplish this for you. Instead, you will want to use logical indexing to write your function like so:
function [T, index] = tension(u, sigma, G, N, K)
T = zeros(size(u)); % Initialize T to a vector of zeroes
w = 2.2;
index = (u < w); % A logical vector, with true where u < w, false where u >= w
T(index) = u(index)*v*sqrt(sigma+G^2/(N-K)); % Formula for u < w
T(~index) = 2*(u(~index)-v)*sqrt(sigma+G^2/(N+K)); % Formula for u >= w
end
Now you can call this function, capturing the second output argument to use for identifying "early" versus "late" values:
sigma0 = 2400; lambda = 1.3; v = 2; sigma = 2; G = 3; N = 8; K = 1;
u = 0:0.01:5;
[T, earlyIndex] = tension(u, sigma, G, N, K); % Call function
T_earlyvalues = T(earlyIndex); % Use logical index to get early T values
T_latervalues = T(~earlyIndex); % Use negated logical index to get later T values
And you can then use the subvectors T_earlyvalues and T_latervalues however you like.
When I type help gmres in MATLAB I get the following example:
n = 21; A = gallery('wilk',n); b = sum(A,2);
tol = 1e-12; maxit = 15;
x1 = gmres(#(x)afun(x,n),b,10,tol,maxit,#(x)mfun(x,n));
where the two functions are:
function y = afun(x,n)
y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x+[x(2:n); 0];
end
and
function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];
end
I tested it and it works great. My question is in both those functions what is the value for x since we never give it one?
Also shouldn't the call to gmres be written like this: (y in the #handle)
x1 = gmres(#(y)afun(x,n),b,10,tol,maxit,#(y)mfun(x,n));
Function handles are one way to parametrize functions in MATLAB. From the documentation page, we find the following example:
b = 2;
c = 3.5;
cubicpoly = #(x) x^3 + b*x + c;
x = fzero(cubicpoly,0)
which results in:
x =
-1.0945
So what's happening here? fzero is a so-called function function, that takes function handles as inputs, and performs operations on them -- in this case, finds the root of the given function. Practically, this means that fzero decides which values for the input argument x to cubicpoly to try in order to find the root. This means the user just provides a function - no need to give the inputs - and fzero will query the function with different values for x to eventually find the root.
The function you ask about, gmres, operates in a similar manner. What this means is that you merely need to provide a function that takes an appropriate number of input arguments, and gmres will take care of calling it with appropriate inputs to produce its output.
Finally, let's consider your suggestion of calling gmres as follows:
x1 = gmres(#(y)afun(x,n),b,10,tol,maxit,#(y)mfun(x,n));
This might work, or then again it might not -- it depends whether you have a variable called x in the workspace of the function eventually calling either afun or mfun. Notice that now the function handles take one input, y, but its value is nowhere used in the expression of the function defined. This means it will not have any effect on the output.
Consider the following example to illustrate what happens:
f = #(y)2*x+1; % define a function handle
f(1) % error! Undefined function or variable 'x'!
% the following this works, and g will now use x from the workspace
x = 42;
g = #(y)2*x+1; % define a function handle that knows about x
g(1)
g(2)
g(3) % ...but the result will be independent of y as it's not used.
I wrote some code that works just fine to evaluate theta on its own with some test input. However, I would like to take this code and turn it into a function that I can call within another matlab file. I keep getting the error message, "Function definitions are not permitted in this context."
I want to be able to define four vectors in another matlab file and call SP1 to evaluate theta for those inputs. I'm not sure where I'm going wrong, though. Please help!
Thanks so much.
clc
clear all
function theta = SP1(p,q1,w1,r)
% INPUT:
%function theta = SP1(p,q1,w1,r)
% p = [5; -7; 12];
% q1 = [17.3037; -3.1128; 2.48175];
% w1 = [1/sqrt(8); sqrt(3/8); 1/sqrt(2)];
% r = [1; 2; -3];
% Define vectors u and v as well as u' and v'.
u = p - r;
v = q1 - r;
w1_t = transpose(w1);
u_prime = u - w1 * w1_t * u;
v_prime = v - w1 * w1_t * v;
% Calculate theta if conditions are met for a solution to exist.
if (abs(norm(u_prime)-norm(v_prime))<0.01) & (abs((w1_t * u)-(w1_t * v))<0.01)
X = w1_t*cross(u_prime,v_prime);
Y = dot(u_prime,v_prime);
theta = atan2(X,Y)
else if (norm(u_prime) == 0 | norm(v_prime) == 0)
disp('Infinite Number of Solutions')
else
disp('Conditions not satisfied to find a solution')
end
end
I think you can just remove the top two lines,
clc
clear all
and save the rest of the code starting with function as SP1.m file.
Then you should be able to call this function as SP1 from other m files.
I think you're confused about how functions work. The first line of a function definition defines how many inputs and outputs MATLAB expects:
function theta = SP1(p,q1,w1,r)
This means that calling a function SP1 will require you to give four inputs, and will return one output. It doesn't mean that:
Your inputs need to be named p, q1 and so on
Your output will be called theta automatically
The function will automatically take in the input variables p, q1, etc if they exist in the workspace.
It also doesn't do any checking on the inputs; so if you require that inputs be of a certain type, size, etc. you need to write your own error checking at the start of the file. You might intend that those inputs be 3x1 vectors, but there's nothing in the function to tell MATLAB that. So, SP1(1,2,3,4) will work, to some extent - it will take those inputs and try to run them through the function, and if they don't cause an error it will give you an output. The output might be wrong, but the computer doesn't know that.
Once you have a function you can call it multiple ways from the command line or from within other functions or scripts. As previously mentioned you don't have to stick to the naming of variables within the function, as long as input variables exist when the function is called MATLAB will accept them:
theta = SP1(p8,q27,w35,not_r);
myoutput = SP1(any,variable,I,like);
I don't necessarily have to give an output (but then the first output will be routed to ans)
SP1(this,will,also,work);
If I have some variables stored in a *.mat file (the case you seem to be asking about), I can do it like this:
load('mydata.mat'); %this file contains stored variables p, q1, w1 and r
theta = SP1(p,q1,w1,r);