I have managed to get myself confused about some elements of memory management. I am new to objective-c, and memory managed languages generally.
I have read the memory management guidelines, but I remain confused about a couple of things.
1) Is there any need to clean up ivars, and method variables that are not retained by any object. For instance
-(void) someMethod{
int count = 100;
for (int i=0; i <count; i++) {
NSLog(#"Count = %d", i);
}
}
What happens to the "count" var after the method is complete?
If a method allocates lots of temporary variables, do those get removed from memory as long as they are not unreleased, alloc'd objects? Or do i need to set them to nil in some way?
2) If i have a static variable, for instance an NSString, do I have to do anything for that to be removed from memory when the class is dealloced?
3) I have noticed that NSStrings seem to have a retainCount of 2147483647 which wikipedia tells me is the max value for a 32 bit signed integer.
http://en.wikipedia.org/wiki/2147483647
myString retainCount = 2147483647
-(void) someMethod{
NSString *myString = #"testString";
NSLog(#"myString retainCount = %d", [myString retainCount]);
// logs: myString retainCount = 2147483647
}
What happens to this at the end of the method? Does this memory ever get emptied? The string is not being referenced by anything. My understanding is that the #"" convenience method for NSString returns an autoreleased object, but whats the point of autoreleasing something with a retainCount of 2147483647 anyway? In that case, whats the point of retaining or releasing ANY NSString?
I am well aware that retainCount should be ignored, but it just bugs me not to know what's going on here.
4) Does this matter at all? I know that the memory associated with an NSString isn't much to write home about, but I want to be a good memory management citizen, and I'm more interested in best practices than anything else.
Retain/release only matters for objects, not int, bool, float, double or other built-ins. So use it for id or other classes that you hold a pointer to an object. In your example, count doesn't need to be retained or released. It is allocated on the stack which is automatically cleaned up when the function returns.
You do need to deal with any local objects you alloc. Those are created with a retainCount set to 1, so you need to either hold on to them for later or release them. Most Cocoa functions (that don't start with copy or alloc) return an object that is autoreleased. This means that they will have release called on them later -- you can only hold these after the function if you call retain on them. If you want them to be cleaned up, you don't need to do anything (calling release would result in too many release calls).
If you have a static variable pointing to an object, then it is not touched when objects of that class are dealloced. If you want it to be released, you have to call release on it. If the static is an int, bool, or other built-in, you don't (can't) call release on it. That's part of the global memory of your app.
NSStrings that are set to string literals should not have release called on them. The retainCount is meaningless for them. That value is also -1 for signed int values.
If you do this -- [[NSString alloc] initCallHere:etc] -- you have to call release on it. Most of the time you get strings, you don't use alloc, so you don't need to call release. If you retain one, you need to call release.
Yes, it does matter. Over time leaks will cause the iPhone to kill your app.
You don't need to worry about count cause it's an integer, a primitive data type, not an object.
I've read that those just go away upon app termination or if you explicitly release them.
You are right in that you should not worry about the retain count in that way. Cocoa automatically gives #"" (NSConstantString objects) the absolute highest retain value so that they cannot be de-allocated.
You are over complicating the subject. The point of the three guidelines is so that you know that you only have to worry about memory management in three specific situations. Apple gives you these guidelines so that one doesn't have to worry about the specific internals for every single class (like manually tracking retainCount), not to mention that sometimes Cocoa does things differently (as with NSConstantString). As long as you remember these guidelines, you really don't have to know the very gritty details of what's going on underneath (of course, an understanding of the retain count concept helps, but compare this to manually tracking it).
I don't know which guide you read specifically, but if you haven't given this one a try, I highly recommend it. It summarizes the three guidelines in a concise and direct manner.
The Cocoa memory management rules only cover Objective C objects.
Local variables (non-static) are cleaned up when any subroutine or method exits (actually the stack memory is just reused/overwritten by subsequent subroutines or methods in the same thread). Constants which require memory (strings) and static variables are cleaned up when the app is torn down by the OS after it exits. Manually malloc'd memory is cleaned up when you manually free it.
But any object you alloc or retain: (whether assigned to an ivar, local, global, static, etc.) has to managed like any other object. Be careful assigning objects to global variables, unless you are really good at retain count management.
I have the following situation, which seems to cause my iPad application to leak memory.
I have a class with a string property...
#property(nonatomic,retain) NSString * synopsis;
I set the string property from some HTTP response, either from JSON or XML response.
At that point the retain count of the synopsis object is 1.
But I have this situation:
I save the synopsis to a local sqlite database, and then I want to release it from memory, but I have the situation where strangely, calling [synopsis release] from within my object does not decrement the retain count to 0.
(void) save
{
NSLog(#"synopsis before save retainCount=%d",[synopsis retainCount]);
[self saveToDb:synopsis withKey:#"synopsis"];
NSLog(#"synopsis after save retainCount=%d",[synopsis retainCount]);
[synopsis release];
NSLog(#"synopsis after release retainCount=%d",[synopsis retainCount]);
synopsis=nil;
}
In the console I get:
synopsis before save retainCount=1
synopsis after save retainCount=1
synopsis after release retainCount=1
How can this be possible? I get the same result running in simulator or on the device.
DON'T RELY ON RETAINCOUNT!
To humans, it's not an accurate measure of object ownership. You don't know what's calling retain and release behind the scenes in a framework.
Memory management in Cocoa is simple:
If you alloc/init or copy an object, make sure you call release on it at some point.
If you want to keep an object around, call retain -- but make sure to call release at some point, too.
Your third NSLog probably calls retainCount on a deallocated object.
The fact, that you see a value of 1 can have three reasons:
There's some other object at the same address now, that has a retain count of one.
(more likely) The deallocated object is still there. It responds to the message by returning the retain count, which would be one because it never was decremented to zero (no need to do that ever, since a deallocated object does not need a valid retain count).
The object is still there and has some custom memory management, preventing retainCount from being decremented.
Edit:
To check deallocation of objects (if you want to be sure), you could always override dealloc and set a breakpoint or put a log message there.
This might help. From the docs about retainCount:
Important: This method is typically of no value in debugging memory management issues. Because any number of framework objects may have retained an object in order to hold references to it, while at the same time autorelease pools may be holding any number of deferred releases on an object, it is very unlikely that you can get useful information from this method.
To understand the fundamental rules of memory management that you must abide by, read “Memory Management Rules”. To diagnose memory management problems, use a suitable tool:
• The LLVM/Clang Static analyzer can typically find memory management problems even before you run your program.
• The Object Alloc instrument in the Instruments application (see Instruments User Guide) can track object allocation and destruction.
• Shark (see Shark User Guide) also profiles memory allocations (amongst numerous other aspects of your program).
I am just getting started with cocoa. So please excuse the silly question, but I can't quite wrap my head around some aspects of memory management yet.
In the interface of my class I am declaring an object as CEMyObjectclass *myObject;. I do not alloc or init the obect in the classe's init menthod. But I do have a method that calls myObject = [[CEMyObjectclass alloc] initWithImage:someImage];. Will that eventually run out of memory or does myObject just get overwritten by a new instance every time that method is called?
Thanks!
You should eventually run out.
Remember that myObject is just a pointer to a block of memory. The pointer myObject will be pointing to the newly allocated object, and you'll have no reference to the old one. Therefore, you won't be able to release its memory (but the object will still be around).
In general, if you alloc something (or retain it), you are responsible for matching this message with a release somewhere later.
Currently I am jumping into the ice cold water called "memory management in iPhone OS".
Here's one rule i've learned:
Every time I see an alloc in my method, I will release that corresponding variable at the bottom of the method.
Every time I create an #property(...) in my header file which says copy or retain, I put a release message on that variable into the dealloc method.
Every time I have an IBOutlet, I do the same thing. Only exception: If the IBOutlet has something like #property(... assign), or in other words: If it has the assign keyword at all. Then I don't care about releasing it in the dealloc method.
I feel that there are many more good rules to know! Just write down what you have. Let's scrape them all together. Links to great descriptions are welcome, too.
Actually, any time you initialize an object and the method name includes "init" you are responsible for releasing it. If you create an object using a Class method that does not include the word "init" then you don't.
For example:
NSString *person = [NSString stringWithFormat:"My name is %#", name];
does not need a release. But:
Person *person = [[Person alloc] init];
needs a release (as you stated in your question). Likewise:
Person *person = [[Person alloc] initWithName:#"Matt"]];
also needs a release.
This is a convention, not a rule of the language, but you will find that it is true for all Apple-supplied APIs.
The rules I use
Release all objects you create using a method whose name begins "alloc" or "new" or contains "copy".
Release all objects you retain.
Do not release objects created using a +className convenience constructor. (The class creates it and is responsible for releasing it.)
Do not release objects you receive in other ways E.g.
mySprockets = [widget sprockets];
If you store an object you receive in an instance variable, retain it or copy it. (Unless it's a weak reference - just a pointer to another object, usually to avoid cyclical references.)
Received objects are valid within the method they are received in (generally) and are also valid if passed back to the invoker.
Some good links:
http://www.gehacktes.net/2009/02/iphone-programming-part-2-objective-c-memory-management/
http://mauvilasoftware.com/iphone_software_development/2008/01/iphone-memory-management-a-bri.html
Memory management can seem daunting when you're seeing segfaults spring from every seeming innocent line of code, but it's actually pretty easy once you get the hang of it. Spend a little time reading this page and then Apple's documentation, and you should be writing bug-free code in no time.
I tend to create only autoreleased objects, either by using a class method or by autoreleasing it immediately after creation, unless I can state a reason not to. For example:
I am assigning it to a member variable because I intend to hold onto it for a while.
I am only creating it to pass it on immediately to another method, and I send it a release message right after that method call.
For performance reasons, I need to free that memory before the nearest NSAutoreleasePool will be released, such as creating a large number of objects inside a loop or the objects are holding onto a large amount of data (e.g., images).
That way, I am less likely to leak objects. By default, I create them autoreleased, and when I make the deliberate decision not to autorelease them, I am immediately faced with the question of where they will be released.
For object properties, rather than releasing them in my dealloc method, I like to assign nil to them. That way, retained or copied properties are sent a release, while assigned properties are simply overwritten, and I don't have to update my dealloc method if I change the property to/from retained.
I'm just beginning to have a look at Objective-C and Cocoa with a view to playing with the iPhone SDK. I'm reasonably comfortable with C's malloc and free concept, but Cocoa's references counting scheme has me rather confused. I'm told it's very elegant once you understand it, but I'm just not over the hump yet.
How do release, retain and autorelease work and what are the conventions about their use?
(Or failing that, what did you read which helped you get it?)
Let's start with retain and release; autorelease is really just a special case once you understand the basic concepts.
In Cocoa, each object keeps track of how many times it is being referenced (specifically, the NSObject base class implements this). By calling retain on an object, you are telling it that you want to up its reference count by one. By calling release, you tell the object you are letting go of it, and its reference count is decremented. If, after calling release, the reference count is now zero, then that object's memory is freed by the system.
The basic way this differs from malloc and free is that any given object doesn't need to worry about other parts of the system crashing because you've freed memory they were using. Assuming everyone is playing along and retaining/releasing according to the rules, when one piece of code retains and then releases the object, any other piece of code also referencing the object will be unaffected.
What can sometimes be confusing is knowing the circumstances under which you should call retain and release. My general rule of thumb is that if I want to hang on to an object for some length of time (if it's a member variable in a class, for instance), then I need to make sure the object's reference count knows about me. As described above, an object's reference count is incremented by calling retain. By convention, it is also incremented (set to 1, really) when the object is created with an "init" method. In either of these cases, it is my responsibility to call release on the object when I'm done with it. If I don't, there will be a memory leak.
Example of object creation:
NSString* s = [[NSString alloc] init]; // Ref count is 1
[s retain]; // Ref count is 2 - silly
// to do this after init
[s release]; // Ref count is back to 1
[s release]; // Ref count is 0, object is freed
Now for autorelease. Autorelease is used as a convenient (and sometimes necessary) way to tell the system to free this object up after a little while. From a plumbing perspective, when autorelease is called, the current thread's NSAutoreleasePool is alerted of the call. The NSAutoreleasePool now knows that once it gets an opportunity (after the current iteration of the event loop), it can call release on the object. From our perspective as programmers, it takes care of calling release for us, so we don't have to (and in fact, we shouldn't).
What's important to note is that (again, by convention) all object creation class methods return an autoreleased object. For example, in the following example, the variable "s" has a reference count of 1, but after the event loop completes, it will be destroyed.
NSString* s = [NSString stringWithString:#"Hello World"];
If you want to hang onto that string, you'd need to call retain explicitly, and then explicitly release it when you're done.
Consider the following (very contrived) bit of code, and you'll see a situation where autorelease is required:
- (NSString*)createHelloWorldString
{
NSString* s = [[NSString alloc] initWithString:#"Hello World"];
// Now what? We want to return s, but we've upped its reference count.
// The caller shouldn't be responsible for releasing it, since we're the
// ones that created it. If we call release, however, the reference
// count will hit zero and bad memory will be returned to the caller.
// The answer is to call autorelease before returning the string. By
// explicitly calling autorelease, we pass the responsibility for
// releasing the string on to the thread's NSAutoreleasePool, which will
// happen at some later time. The consequence is that the returned string
// will still be valid for the caller of this function.
return [s autorelease];
}
I realize all of this is a bit confusing - at some point, though, it will click. Here are a few references to get you going:
Apple's introduction to memory management.
Cocoa Programming for Mac OS X (4th Edition), by Aaron Hillegas - a very well written book with lots of great examples. It reads like a tutorial.
If you're truly diving in, you could head to Big Nerd Ranch. This is a training facility run by Aaron Hillegas - the author of the book mentioned above. I attended the Intro to Cocoa course there several years ago, and it was a great way to learn.
If you understand the process of retain/release then there are two golden rules that are "duh" obvious to established Cocoa programmers, but unfortunately are rarely spelled out this clearly for newcomers.
If a function which returns an object has alloc, create or copy in its name then the object is yours. You must call [object release] when you are finished with it. Or CFRelease(object), if it's a Core-Foundation object.
If it does NOT have one of these words in its name then the object belongs to someone else. You must call [object retain] if you wish to keep the object after the end of your function.
You would be well served to also follow this convention in functions you create yourself.
(Nitpickers: Yes, there are unfortunately a few API calls that are exceptions to these rules but they are rare).
If you're writing code for the desktop and you can target Mac OS X 10.5, you should at least look into using Objective-C garbage collection. It really will simplify most of your development — that's why Apple put all the effort into creating it in the first place, and making it perform well.
As for the memory management rules when not using GC:
If you create a new object using +alloc/+allocWithZone:, +new, -copy or -mutableCopy or if you -retain an object, you are taking ownership of it and must ensure it is sent -release.
If you receive an object in any other way, you are not the owner of it and should not ensure it is sent -release.
If you want to make sure an object is sent -release you can either send that yourself, or you can send the object -autorelease and the current autorelease pool will send it -release (once per received -autorelease) when the pool is drained.
Typically -autorelease is used as a way of ensuring that objects live for the length of the current event, but are cleaned up afterwards, as there is an autorelease pool that surrounds Cocoa's event processing. In Cocoa, it is far more common to return objects to a caller that are autoreleased than it is to return objets that the caller itself needs to release.
Objective-C uses Reference Counting, which means each Object has a reference count. When an object is created, it has a reference count of "1". Simply speaking, when an object is referred to (ie, stored somewhere), it gets "retained" which means its reference count is increased by one. When an object is no longer needed, it is "released" which means its reference count is decreased by one.
When an object's reference count is 0, the object is freed. This is basic reference counting.
For some languages, references are automatically increased and decreased, but objective-c is not one of those languages. Thus the programmer is responsible for retaining and releasing.
A typical way to write a method is:
id myVar = [someObject someMessage];
.... do something ....;
[myVar release];
return someValue;
The problem of needing to remember to release any acquired resources inside of code is both tedious and error-prone. Objective-C introduces another concept aimed at making this much easier: Autorelease Pools. Autorelease pools are special objects that are installed on each thread. They are a fairly simple class, if you look up NSAutoreleasePool.
When an object gets an "autorelease" message sent to it, the object will look for any autorelease pools sitting on the stack for this current thread. It will add the object to the list as an object to send a "release" message to at some point in the future, which is generally when the pool itself is released.
Taking the code above, you can rewrite it to be shorter and easier to read by saying:
id myVar = [[someObject someMessage] autorelease];
... do something ...;
return someValue;
Because the object is autoreleased, we no longer need to explicitly call "release" on it. This is because we know some autorelease pool will do it for us later.
Hopefully this helps. The Wikipedia article is pretty good about reference counting. More information about autorelease pools can be found here. Also note that if you are building for Mac OS X 10.5 and later, you can tell Xcode to build with garbage collection enabled, allowing you to completely ignore retain/release/autorelease.
Joshua (#6591) - The Garbage collection stuff in Mac OS X 10.5 seems pretty cool, but isn't available for the iPhone (or if you want your app to run on pre-10.5 versions of Mac OS X).
Also, if you're writing a library or something that might be reused, using the GC mode locks anyone using the code into also using the GC mode, so as I understand it, anyone trying to write widely reusable code tends to go for managing memory manually.
As ever, when people start trying to re-word the reference material they almost invariably get something wrong or provide an incomplete description.
Apple provides a complete description of Cocoa's memory management system in Memory Management Programming Guide for Cocoa, at the end of which there is a brief but accurate summary of the Memory Management Rules.
I'll not add to the specific of retain/release other than you might want to think about dropping $50 and getting the Hillegass book, but I would strongly suggest getting into using the Instruments tools very early in the development of your application (even your first one!). To do so, Run->Start with performance tools. I'd start with Leaks which is just one of many of the instruments available but will help to show you when you've forgot to release. It's quit daunting how much information you'll be presented with. But check out this tutorial to get up and going fast:
COCOA TUTORIAL: FIXING MEMORY LEAKS WITH INSTRUMENTS
Actually trying to force leaks might be a better way of, in turn, learning how to prevent them! Good luck ;)
Matt Dillard wrote:
return [[s autorelease] release];
Autorelease does not retain the object. Autorelease simply puts it in queue to be released later. You do not want to have a release statement there.
My usual collection of Cocoa memory management articles:
cocoa memory management
There's a free screencast available from the iDeveloperTV Network
Memory Management in Objective-C
NilObject's answer is a good start. Here's some supplemental info pertaining to manual memory management (required on the iPhone).
If you personally alloc/init an object, it comes with a reference count of 1. You are responsible for cleaning up after it when it's no longer needed, either by calling [foo release] or [foo autorelease]. release cleans it up right away, whereas autorelease adds the object to the autorelease pool, which will automatically release it at a later time.
autorelease is primarily for when you have a method that needs to return the object in question (so you can't manually release it, else you'll be returning a nil object) but you don't want to hold on to it, either.
If you acquire an object where you did not call alloc/init to get it -- for example:
foo = [NSString stringWithString:#"hello"];
but you want to hang on to this object, you need to call [foo retain]. Otherwise, it's possible it will get autoreleased and you'll be holding on to a nil reference (as it would in the above stringWithString example). When you no longer need it, call [foo release].
The answers above give clear restatements of what the documentation says; the problem most new people run into is the undocumented cases. For example:
Autorelease: docs say it will trigger a release "at some point in the future." WHEN?! Basically, you can count on the object being around until you exit your code back into the system event loop. The system MAY release the object any time after the current event cycle. (I think Matt said that, earlier.)
Static strings: NSString *foo = #"bar"; -- do you have to retain or release that? No. How about
-(void)getBar {
return #"bar";
}
...
NSString *foo = [self getBar]; // still no need to retain or release
The Creation Rule: If you created it, you own it, and are expected to release it.
In general, the way new Cocoa programmers get messed up is by not understanding which routines return an object with a retainCount > 0.
Here is a snippet from Very Simple Rules For Memory Management In Cocoa:
Retention Count rules
Within a given block, the use of -copy, -alloc and -retain should equal the use of -release and -autorelease.
Objects created using convenience constructors (e.g. NSString's stringWithString) are considered autoreleased.
Implement a -dealloc method to release the instancevariables you own
The 1st bullet says: if you called alloc (or new fooCopy), you need to call release on that object.
The 2nd bullet says: if you use a convenience constructor and you need the object to hang around (as with an image to be drawn later), you need to retain (and then later release) it.
The 3rd should be self-explanatory.
Lots of good information on cocoadev too:
MemoryManagement
RulesOfThumb
As several people mentioned already, Apple's Intro to Memory Management is by far the best place to start.
One useful link I haven't seen mentioned yet is Practical Memory Management. You'll find it in the middle of Apple's docs if you read through them, but it's worth direct linking. It's a brilliant executive summary of the memory management rules with examples and common mistakes (basically what other answers here are trying to explain, but not as well).