representing complex boolean operations in human readable format - boolean

I have a boolean expression: A && (B || C && D)
However A, B, C, and D are quite long character-wise so representing it all in a single line is not possible. Let us assume for this example that A, B, C, and D will be on their own lines.
What is a recommended way to represent this expression using indentations extra parenthesis if necessary, line breaks and so on to maximize human readability.

First of all, according to your comment, you can use boolean variables such as bAreFooAndBarEqual, only have their name carry a deeper meaning, and follow your own naming conventions.
As for your specific example, I would explicitly show that I want the && to take precedence over the ||, and so add another pair of parentheses: A && (B || (C && D)).
Then, I would indent on each bracket opening, having the operator to the left of the operands (this is a personal taste, you should see what looks clearest to you):
A
&& (B
|| (C
&& D))
Of course, this is just a personal taste, and you should think what feels most natural and looks the most clear to you.

Related

kdb: does a leading plus sign mean a Q table?

I often see output like
+`col1`col2`col3!(,`a`b`c;,{x+1};,()!()). I suspect it means a table, but wasn't able to find documentation on this syntax.
What does the leading + mean? Could someone provide a link to a reference page?
It's notation in K, the language Q operations are built in. + is the flip operator when used monadically, and internally tables are referred to as Flips.
In Q, flip is built from this and the : operator, which forces the + to be interpreted monadically. Similarly for the where keyword:
q)flip
+:
q)where
&:

How to make a contract for a heterogeneous list with arbitrary number of values?

I am trying to make a contract for data that looks like this:
'(a (b c) (d e) ...) ; a, b, c, d, e are all symbols
which is basically a list consisting of a symbol followed by an arbitrary number of lists of two symbols.
There is list/c but that only lets me make it with a fixed number of elements.
There is also *list/c which takes arbitrary initial values, followed by final fixed values, which is kind of the opposite of what I need.
How do I make a correct contract for my data structure?
You can use cons/c to apply one contract to the head of the list and another to the tail. What you want to express is that the head is a symbol and the tail is a list of pairs of symbols, so that'd be:
(cons/c symbol? (listof (list/c symbol? symbol?)))

What's the semantic difference between the backtick and quote symbols in Common Lisp?

I understand that both suppress evaluation of a symbol or expression. But the backtick is used for macro definitions while the apostrophe is used for symbols (among other things). What is the difference, semantically speaking, between these two notations?
Backticks allow for ,foo and ,#foo to interpolate dynamic parts into the quoted expression.
' straight up quotes everything literally.
If there are no comma parts in the expression, ` and ' can be used interchangeably.
A standard quote is a true constant literal and similar lists and list that end with the same structure can share values:
'(a b c d) ; ==> (a b c d)
A backquoted structure might not be a literal. It is evaluated as every unquote needs to be evaluated and inserted into place. This means that something like `(a ,#b ,c d) actually gets expanded to something similar to (cons 'a (append b (cons c '(d)))).
The standard is very flexible on how the implementations solves this so if you try to macroexpand the expression you get many different solutions and sometimes internal functions. The result though is well explained in the standard.
NB: Even though two separate evaluation produces different values the implementation is still free to share structure and thus in my example '(d) has the potential to be shared and if one would use mutating concatenation of the result might end up with an infinite structure.
A parallel to this is that in some algol languages you have two types of strings. One that interpolates variables and one that don't. Eg. in PHP
"Hello $var"; // ==> 'Hello Shoblade'
'Hello $var'; // ==> 'Hello $var'

Why Swift cannot remove spaces when compiling code?

Quite new to Swift, compared to Java and C++...I'm just wondering why Swift doesn't remove spaces when compiling code as following:
if x!=10 {...} //I have to add space before and after != to get rid of issue.
Increment like increment++ as well can not be act as increment in For syntax if I don't put a space between increment++ and { of loop block.
As in Java or C++, space and Tab do not make sense in terms of compiling. Is Swift just like Python in the way of consider space or tab as part of code?
Swift does not consider spaces as important, however it uses them when separating characters into lexemes.
Consider the following:
a != 1
a! =1
a!= 1
a!=1
The first one can be compiled because the lexical analysis correctly recognizes lexems a, != and 1, != being an infix operator.
In the second one, the lexical analysis recognizes lexem a with a postfix operator ! and a 1 with a prefix operator =.
The third one is lexem a with a postfix operator != and lexem 1.
The last one is ambiguous because it can be either a! = 1 or a != 1. The compiler decided probably based on operator priority to use a! = 1.
Spaces are ignored but they still have a meaning when distinguishing between ambiguous cases. The same is actually valid in many languages. The fact that you can define your own operators limits a bit your coding style.
To compare, try a+++b in Java or C++. Will it be a++ + b or a + ++b?
The exclamation mark is not only used as not for example. It is also used to unwrap an optional variable.
There is more syntactic difference to other languages.

What exactly is a symbol in lisp/scheme?

For the love of the almighty I have yet to understand the purpose of the symbol 'iamasymbol. I understand numbers, booleans, strings... variables. But symbols are just too much for my little imperative-thinking mind to take. What exactly do I use them for? How are they supposed to be used in a program? My grasp of this concept is just fail.
In Scheme and Racket, a symbol is like an immutable string that happens to be interned so that symbols can be compared with eq? (fast, essentially pointer comparison). Symbols and strings are separate data types.
One use for symbols is lightweight enumerations. For example, one might say a direction is either 'north, 'south, 'east, or 'west. You could of course use strings for the same purpose, but it would be slightly less efficient. Using numbers would be a bad idea; represent information in as obvious and transparent a manner as possible.
For another example, SXML is a representation of XML using lists, symbols, and strings. In particular, strings represent character data and symbols represent element names. Thus the XML <em>hello world</em> would be represented by the value (list 'em "hello world"), which can be more compactly written '(em "hello world").
Another use for symbols is as keys. For example, you could implement a method table as a dictionary mapping symbols to implementation functions. To call a method, you look up the symbol that corresponds to the method name. Lisp/Scheme/Racket makes that really easy, because the language already has a built-in correspondence between identifiers (part of the language's syntax) and symbols (values in the language). That correspondence makes it easy to support macros, which implement user-defined syntactic extensions to the language. For example, one could implement a class system as a macro library, using the implicit correspondence between "method names" (a syntactic notion defined by the class system) and symbols:
(send obj meth arg1 arg2)
=>
(apply (lookup-method obj 'meth) obj (list arg1 arg2))
(In other Lisps, what I've said is mostly truish, but there are additional things to know about, like packages and function vs variable slots, IIRC.)
A symbol is an object with a simple string representation that (by default) is guaranteed to be interned; i.e., any two symbols that are written the same are the same object in memory (reference equality).
Why do Lisps have symbols? Well, it's largely an artifact of the fact that Lisps embed their own syntax as a data type of the language. Compilers and interpreters use symbols to represent identifiers in a program; since Lisp allows you to represent a program's syntax as data, it provides symbols because they're part of the representation.
What are they useful apart from that? Well, a few things:
Lisp is commonly used to implement embedded domain-specific languages. Many of the techniques used for that come from the compiler world, so symbols are an useful tool here.
Macros in Common Lisp usually involve dealing with symbols in more detail than this answer provides. (Though in particular, generation of unique identifiers for macro expansions requires being able to generate a symbol that's guaranteed never to be equal to any other.)
Fixed enumeration types are better implemented as symbols than strings, because symbols can be compared by reference equality.
There are many data structures you can construct where you can get a performance benefit from using symbols and reference equality.
Symbols in lisp are human-readable identifiers. They are all singletons. So if you declare 'foo somewhere in your code and then use 'foo again, it will point to the same place in memory.
Sample use: different symbols can represent different pieces on a chessboard.
From Structure and Interpretation of Computer Programs Second Edition by Harold Abelson and Gerald Jay Sussman 1996:
In order to manipulate symbols we need a new element in our language:
the ability to quote a data object. Suppose we want to construct the list
(a b). We can’t accomplish this with (list a b), because this expression
constructs a list of the values of a and b rather than the symbols themselves.
This issue is well known in the context of natural languages, where words
and sentences may be regarded either as semantic entities or as character
strings (syntactic entities). The common practice in natural languages is to use quotation marks to indicate that a word or a sentence is to be treated
literally as a string of characters. For instance, the first letter of “John” is
clearly “J.” If we tell somebody “say your name aloud,” we expect to hear
that person’s name. However, if we tell somebody “say ‘your name’ aloud,”
we expect to hear the words “your name.” Note that we are forced to nest
quotation marks to describe what somebody else might say.
We can follow this same practice to identify lists and symbols that are
to be treated as data objects rather than as expressions to be evaluated.
However, our format for quoting differs from that of natural languages in
that we place a quotation mark (traditionally, the single quote symbol ’)
only at the beginning of the object to be quoted. We can get away with this in Scheme syntax because we rely on blanks and parentheses to delimit
objects. Thus, the meaning of the single quote character is to quote the
next object.
Now we can distinguish between symbols and their values:
(define a 1)
(define b 2)
(list a b)
(1 2)
(list ’a ’b)
(a b)
(list ’a b)
(a 2)
Lists containing symbols can look just like the expressions of our language:
(* (+ 23 45) (+ x 9))
(define (fact n) (if (= n 1) 1 (* n (fact (- n 1)))))
Example: Symbolic Differentiation
A symbol is just a special name for a value. The value could be anything, but the symbol is used to refer to the same value every time, and this sort of thing is used for fast comparisons. As you say you are imperative-thinking, they are like numerical constants in C, and this is how they are usually implemented (internally stored numbers).
To illustrate the point made by Luis Casillas, it might be useful to observe how symbols eval differently than strings.
The example below is for mit-scheme (Release 10.1.10). For convenience, I use this function as eval:
(define my-eval (lambda (x) (eval x (scheme-report-environment 5))))
A symbol can easily evaluate to the value or function it names:
(define s 2) ;Value: s
(my-eval "s") ;Value: "s"
(my-eval s) ;Value: 2
(define a '+) ;Value: a
(define b "+") ;Value: b
(my-eval a) ;Value: #[arity-dispatched-procedure 12]
(my-eval b) ;Value: "+"
((my-eval a) 2 3) ;Value: 5
((my-eval b) 2 3) ;ERROR: The object "+" is not applicable.