How to draw an isosurface in the same figure with a scatter3 plot in matlab? - matlab

I have a 3D volume and a 3D point cloud. How can I draw the point cloud, along with an isosurface of the volume, without overwriting the scatter plot? Using patch to draw the isosurface always wipes away the scatter3 plot.

Some things to try.
Draw the surface use patches first. (h = patch(...), then set hold on)
Make the patches semi-transparent. This will let you see if the scatter items are still there, just hidden. It also tells the renderer that everything needs to be plotted, which can prevent some sorts of graphics bugs.
set(h,'faceAlpha',0.5)
Try using plot3 instead of scatter3. This does not allow you to change individual marker sizes or colors, but it is much easier on Matlab. Even if you need the scatter3 features, this is worth trying as a debugging step.

Related

Drawing black areas in matlab contourf plot

I am generating a series of plots using matlab contourf. I need to do the following with the resulting figure. From this state:
Make this:
Important note: I know the coordinates of pixels which should be blackened.
The easiest way is possible to use ind2rgb, do the "blackening" manually, then use imagesc and deal with the axes propeerties. But using this I will lose the contourf graphics (e.g. the contour lines).
Any better ideas?
You can manipulate the figure colormap by adding black color to the one you use.
M=colormap;
M=[0,0,0 ; M];
colormap(M)
Now assign to the "should be black" pixels a value smaller than the minimum. This will map this value to the minimum color which is now black.
To assign the value efficiently use subs2ind

Constructing voxels of a 3D cube in MATLAB

I want to construct a 3D cube in MATLAB. I know that the units of any 3D shape are voxels not pixels. Here is what I want to do,
First, I want to construct a cube with some given dimensions x, y, and z.
Second, according to what I understand from different image processing tutorials, this cube must consists of voxels (3D pixels). I want to give every voxel an initial color value, say gray.
Third, I want to access every voxel and change its color, but I want to distinguish the voxels that represent the faces of the cube from those that represent the internal region. I want to axis every voxel by its position x,y, z. At the end, we will end up with a cube that have different colors regions.
I've searched a lot but couldn't find a good way to implement that, but the code given here seems very close in regard to constructing the internal region of the cube,
http://www.mathworks.com/matlabcentral/fileexchange/3280-voxel
But it's not clear to me how it performs the process.
Can anyone tell me how to build such a cube in MATLAB?
Thanks.
You want to plot voxels! Good! Lets see how we can do this stuff.
First of all: yeah, the unit of 3D shapes may be voxels, but they don't need to be. You can plot an sphere in 3D without it being "blocky", thus you dont need to describe it in term of voxels, the same way you don't need to describe a sinusoidal wave in term of pixels to be able to plot it on screen. Look at the figure below. (same happens for cubes)
If you are interested in drawing voxels, I generally would recommend you to use vol3D v2 from Matlab's FEX. Why that instead of your own?
Because the best (only?) way of plotting voxels is actually plotting flat square surfaces, 6 for each cube (see answer here for function that does that). This flat surfaces will also create some artifacts for something called z-fighting in computer graphics. vol3D actually only plots 3 surfaces, the ones looking at you, saving half of the computational time, and avoiding ugly plotting artifacts. It is easy to use, you can define colors per voxel and also the alpha (transparency) of each of them, allowing you to see inside.
Example of use:
% numbers are arbitrary
cube=zeros(11,11,11);
cube(3:9,3:9,3:9)=5; % Create a cube inside the region
% Boring: faces of the cube are a different color.
cube(3:9,3:9,3)=2;
cube(3:9,3:9,9)=2;
cube(3:9,3,3:9)=2;
cube(3:9,9,3:9)=2;
cube(3,3:9,3:9)=2;
cube(9,3:9,3:9)=2;
vold3d('Cdata',cube,'alpha',cube/5)
But yeah, that still looks bad. Because if you want to see the inside, voxel plotting is not the best option. Alphas of different faces stack one on top of the other and the only way of solving this is writing advanced computer graphics ray tracing algorithms, and trust me, that's a long and tough road to take.
Very often one has 4D data, thus data that contains 3D location and a single data for each of the locations. One may think that in this case, you really want voxels, as each of them have a 3D +color, 4D data. Indeed! you can do it with voxels, but sometimes its better to describe it in some other ways. As an example, lets see this person who wanted to highlight a region in his/hers 4D space (link). To see a bigger list I suggest you look at my answer in here about 4D visualization techniques.
Lets try wits a different approach than the voxel one. Lets use the previous cube and create isosurfaces whenever the 4D data changes of value.
iso1=isosurface(cube,1);
iso2=isosurface(cube,4);
p1=patch(iso1,'facecolor','r','facealpha',0.3,'linestyle','none');
p2=patch(iso2,'facecolor','g','facealpha',1,'linestyle','none');
% below here is code for it to look "fancy"
isonormals(cube,p1)
view(3);
axis tight
axis equal
axis off
camlight
lighting gouraud
And this one looks way better, in my opinion.
Choose freely and good plotting!

putting together 2 contours in matlab.

I'm making my own Shakemap (so far, Shamemap) with Matlab. A Shakemap is a representation of the intensity of ground shaking in a map (google it up for more info). I want it to be similar to those from the USGS, in which they plot the intensity using a jet colormap and they control the shading to represent the altimetry data. So far I haven't figured out how they do this.
I have a set of coordinates with the location's elevation (from NASA's SRTM) and in the same set of coordinates I have some parameters of ground shaking.
[lat long SRTM]
[lat long GroundShaking]
I can contour them separately, but if I put them in the same figure just like that one overrides the other.
How can I put them in the same figure? I have thought about assigning a new value to each location such that the new value accounts for both measures; locations with the same GroundShaking parameter should be the same color, but if one is higher then that one should be darker. Unfortunately I don't know how to implement this. I have also thought about setting the alpha feature manualy, but I can't make it work only for the Ground Shaking data. Any suggestions ?
MWE:
x=0:0.01:1;
y=0:0.01:1;
[xx,yy]=meshgrid(x,y);
asd1=zeros(length(x),length(y));
ads2=asd1;
for i=1:length(x)
for j=1:length(y)
asd1(i,j)=x(i)*y(j);
asd2(i,j)=x(i)*x(i)+y(j)*y(j);
end
end
c1=griddata(x,y,asd1,xx,yy, 'linear');
c2=griddata(x,y,asd2,xx,yy, 'linear');
contourf(asd1)
contourf(asd2)
alpha(0.5)
(MWE unrelated to the map because the data is huge)
You need to add a hold on so that the first plot is not overwritten. This nearly works.
colormap gray
map1=colormap
colormap jet
map2=colormap
M=[map1;map2];
asd2=asd2*(max(asd1(:))-min(asd1(:)))/(max(asd2(:))-min(asd2(:)));
asd2=asd2-max(asd2(:));
colormap(M)
caxis([min(asd2(:)) max(asd1(:))])
figure(1)
contourf(asd1)
figure(2)
contourf(asd2)

Plot 3D surface that is not the graph of a function

I have a 3D data set of a surface that is not a function graph. The data is just a bunch of points in 3D, and the only thing I could think of was to try scatter3 in Matlab. Surf will not work since the surface is not a function graph.
Using scatter3 gave a not so ideal result since there is no perspective/shading of any sort.
Any thoughts? It does not have to be Matlab, but that is my go-to source for plotting.
To get an idea of the type of surface I have, consider the four images:
The first is a 3D contour plot, the second is a slice in a plane {z = 1.8} of the contour. My goal is to pick up all the red areas. I have a method to do this for each slice {z = k}. This is the 3rd plot, and I like what I see here a lot.
Iterating this over z give will give a surface, which is the 4th plot, which is a bit noisy (though I have ideas to reduce the noise...). If I plot just the black surface using scatter3 without the contour all I get is a black indistinguishable blob, but for every slice I get a smooth curve, and I have noticed that the curves vary pretty smoothly when I adjust z.
Some fine-tuning will give a much better 4th plot, but still, even if I get the 4th plot to have no noise at all, the result using scatter3 will be a black incomprehensible blob when plotted alone and not on top of the 3D contour. I would like to get a nice picture of the full surface that is not plotted on top of the 3D contour plot
In fact, just to compare and show how bad scatter3 is for surfaces, even if you had exact points on a sphere and used scatter3 the result would be a black blob, and wouldn't even look like a sphere
Can POV-Ray handle this? I've never used it...
If you have a triangulation of your points, you could consider using the trisurf function. I have used that before to generate closed surfaces that have no boundary (such as polyhedra and spheres). The downside is that you have to generate a triangulation of your points. This may not be ideal to your needs but it definitely an option.
EDIT: As #High Performance Mark suggests, you could try using delaunay to generate a triangulation in Matlab
just wanted to follow up on this question. A quick nice way to do this in Matlab is the following:
Consider the function d(x, y, z) defined as the minimum distance from (x, y, z) to your data set. Make sure d(x, y, z) is defined on some grid that contains the data set you're trying to plot.
Then use isosurface to plot a (some) countour(s) of d(x, y, z). For me plotting the contour 0.1 of d(x, y ,z) was enough: Matlab will plot a nice looking surface of all points within a distance 0.1 of the data set with good lighting and all.
In povray, a blob object could be used to display a very dense collection of points, if you make them centers of spheres.
http://www.povray.org/documentation/view/3.6.1/71/
If you want to be able to make slices of "space" and have them colored as per your data, then maybe the object pattern (based on a #declared blob object) might do the trick.
Povray also has a way to work with df3 files, which I've never worked with, but this user appears to have done something similar to your visualization.
http://paulbourke.net/miscellaneous/df3/

plot a set of 3D data in different angles in MATLAB

I have a formula that depends on theta and phi (spherical coordinates 0<=theta<=2*pi and 0<=phi<=pi). By inserting each engle, I obtained a quantity. Now I have a set of data for different angles and I need to plot the surface. My data is a 180*360 matrix, so I am not sure if I can use SURF or MESH or PLOT3. The figure should be a surface that include all data and the axes should be in terms of the quantity, not the quantity versus the angles. How can I plot such a surface?
I see no reason why you cannot use mesh or surf to plot such data. Another option I tend to use is that of density plots. You basically display the dependent variable (quantity) as an image and include the independent variables (angles) along the axis, much like you would with the aforementioned 3D plotting functions. This can be done with imagesc.
Typically you would want your axes to be the dependent variables. Could you elaborate more on this point?
If I understand you correctly you have calculated a function f(theta,phi) and now you want to plot the surface containing all the points with the polar coordinated (r,theta,phi) where r=f(theta,phi).
If this is what you want to do, the 2D version of such a plot is included in MATLAB under the name polar. Unfortunately, as you pointed out, polar3 on MatlabCentral is not the generalization you are looking for.
I have been able to plot a sphere with the following code, using constant r=1. You can give it a try with your function:
phi1=0:1/(3*pi):pi; %# this would be your 180 points
theta1=-pi:1/(3*pi):pi; % your 360 points
r=ones(numel(theta1),numel(phi1));
[phi,theta]=meshgrid(phi1,theta1);
x=r.*sin(theta).*cos(phi);
y=r.*sin(theta).*sin(phi);
z=r.*cos(theta);
tri=delaunay(x(:),y(:),z(:));
trisurf(tri,x,y,z);
From my tests it seems that delaunay also includes a lot of triangles which go through the volume of my sphere, so it seems this is not optimal. So maybe you can have a look at fill3 and construct the triangles it draws itself: as a first approximation, you could have the points [x(n,m) x(n+1,m) x(n,m+1)] combined into one triangle, and [x(n+1,m) x(n+1,m+1) x(n+1,m+1)] into another...?