Dynamic configs with Structuremap - inversion-of-control

Here's what I am trying to accomplish with Structuremap.
On each we request, database connection strings and web service urls used in our clients will vary based on some business logic. Currently, our sql and web service client implementations receive the configs in their constructors.
I wanted to use profiles, only to discover that it is not possible to use them per request.
In our team, we're having a debate over two solutions:
1- Pass a config factory into the registry that can resolve which configurations to use
when the container needs to instantiate something.
Problems I see is that we might have to use HttpContext.Items, as most of the app objects are not instantiated in structuremap and it seems hard to get the current request context from within the factory.
2- Instantiate containers for every different configurations and decide which container to use depending on the business logic.
Problems I see is the load time, the memory consumption and maybe the lifecycles of objects. So, I don't seem to find any real problem here, it just feels wrong to me to have multiple containers.
1- Do you see other problems?
2- Any better idea?
3- Which one would you choose?
Thank you
EDIT
and it seems hard to get the current request context from within the factory.
I don't mean HttpContext, I mean the request data. For this app, it is a wcf request object.

it seems hard to get the current request context from within the factory.
Not sure why it seems that way. Wouldnt the following do the trick?
ObjectFactory.Configure(config => {
config.For<HttpContextBase>()
.Use(() => { return new HttpContextWrapper(HttpContext.Current); });
config.For<Service>().Use<Service>();
});
var service = ObjectFactory.GetInstance<Service>();
public class ConfigurationFactory
{
public ConfigurationFactory(System.Web.HttpContextBase context)
{
}
}
public class Service
{
public Service(ConfigurationFactory Configuration)
{
}
}

Related

Should service layer accept a DTO or a custom request object from the controller?

As the title suggests what is the best practice when designing service layers?. I do understand service layer should always return a DTO so that domain (entity) objects are preserved within the service layer. But what should be the input for the service layer from the controllers?
I put forward three of my own suggestions below:
Method 1:
In this method the domain object (Item) is preserved within the service layer.
class Controller
{
#Autowired
private ItemService service;
public ItemDTO createItem(IntemDTO dto)
{
// service layer returns a DTO object and accepts a DTO object
return service.createItem(dto);
}
}
Method 2:
This is where the service layer receives a custom request object. I have seen this pattern extensively in AWS Java SDK and also Google Cloud Java API
class Controller
{
#Autowired
private ItemService service;
public ItemDTO createItem(CreateItemRequest request)
{
// service layer returns a DTO object and accepts a custom request object
return service.createItem(request);
}
}
Method 3:
Service layer accepts a DTO and returns a domain object. I am not a fan of this method. But its been used extensively used at my workplace.
class Controller
{
#Autowired
private ItemService service;
public ItemDTO createItem(CreateItemRequest request)
{
// service layer returns a DTO object and accepts a DTO object
Item item = service.createItem(request);
return ItemDTO.fromEntity(item);
}
}
If all 3 of the above methods are incorrect or not the best way to do it, please advise me on the best practice.
Conceptually speaking, you want to be able to reuse the service/application layer across presentation layers and through different access ports (e.g. console app talking to your app through a web socket). Furthermore, you do not want every single domain change to bubble up into the layers above the application layer.
The controller conceptually belongs to the presentation layer. Therefore, you wouldn't want the application layer to be coupled upon a contract defined in the same conceptual layer the controller is defined in. You also wouldn't want the controller to depend upon the domain or it may have to change when the domain changes.
You want a solution where the application layer method contracts (parameters & return type) are expressed in any Java native types or types defined in the service layer boundary.
If we take an IDDD sample from Vaughn Vernon, we can see that his application service method contracts are defined in Java native types. His application service command methods also do not yield any result given he used CQRS, but we can see query methods do return a DTO defined in the application/service layer package.
In the above listed 3 methods which ones are correct/wrong?
Both, #1 and #2 are very similar and could be right from a dependency standpoint, as long as ItemDto and CreateItemRequest are defined in the application layer package, but I would favor #2 since the input data type is named against the use case rather than simply the kind of entity it deals with: entity-naming-focus would fit better with CRUD and because of that you might find it difficult to find good names for input data types of other use case methods operating on the same kind of entity. #2 also have been popularized through CQRS (where commands are usually sent to a command bus), but is not exclusive to CQRS. Vaughn Vernon also uses this approach in the IDDD samples. Please note that what you call request is usually called command.
However, #3 would not be ideal given it couples the controller (presentation layer) with the domain.
For example, some methods receive 4 or 5 args. According to Eric Evans in Clean Code, such methods must be avoided.
That's a good guideline to follow and I'm not saying the samples couldn't be improved, but keep in mind that in DDD, the focus is put on naming things according to the Ubiquitous Language (UL) and following it as closely as possible. Therefore, forcing new concepts into the design just for the sake of grouping arguments together could potentially be harmful. Ironically, the process of attempting to do so may still offer some good insights and allow to discover overlooked & useful domain concepts that could enrich the UL.
PS: Robert C. Martin has written Clean Code, not Eric Evans which is famous for the blue book.
I'm from C# background but the concept remains same here.
In a situation like this, where we have to pass the parameters/state from application layer to service layer and, then return result from service layer, I would tend to follow separation-of-concerns. The service layer does not need to know about the Request parameter of you application layer/ controller. Similarly, what you return from service layer should not be coupled with what you return from your controller. These are different layers, different requirements, separate concerns. We should avoid tight coupling.
For the above example, I would do something like this:
class Controller
{
#Autowired
private ItemService service;
public ItemResponse createItem(CreateItemRequest request)
{
var creatItemDto = GetDTo(request);
var itemDto = service.createItem(createItemDto);
return GetItemResponse(itemDto);
}
}
This may feel like more work since now you need to write addional code to convert the different objects. However, this gives you a great flexiblity and makes the code much easier to maintain. For example: CreateItemDto may have additional/ computational fields as compared to CreateItemRequest. In such cases, you do not need to expose those fields in your Request object. You only expose your Data Contract to the client and nothing more. Similarly, you only return the relevant fields to the client as against what you return from service layer.
If you want to avoid manual mapping between Dto and Request objects C# has libaries like AutoMapper. In java world, I'm sure there should be an equivalent. May be ModelMapper can help.

WebAPI/Unity Intercept Request and Change ConectionString Unity Container for EF Context

I'm building an API that needs to connect to a different database per request. Currently I'm using EF. These databases all have the same schema, therefore I can share a DbContext class. I have repositories to abstract persistence, and these are the ones using the DbContext objects.
Unity is handling dependency resolution, it is injecting my repositories with DbContext objects, and the repos on the controllers. Basically with zero configuration. I understand that probably I may need to create my own HttpRequestLifeCycle thing as suggested in this answer to make sure I have the same DbContext object through out the request.
Now, I would like to configure a ConnectionString to be used by Unity when creating DbContext objects to pass along to the repositories.
These ConnectionString will come from a repository (most likely a different fixed database), based on a parameter on my route. So, my intention is to have a delegating handler inspect the route, get the parameter, get the ConnectionString and tell Unity: "here, use this particular connection string when creating DbContext objects for my repositories during this request."
First, is my approach reasonable? Is this achievable?
How would this dynamic parameter configuration done?
Thanks in advance,
Yes, this is reasonable and achievable and frankly, easy.
Just approach this differently, instead of thinking how to inject connection strings, just register a factory for your db contexts. In the factory method, use the route information to read the connection string and return the context.
containe.Register<MyDbContext>( new InjectionFactory(
c => {
// this is the factory method
// the code will be executed upon each resolution
String routeInfo = GetTenantFromCurrentRoute();
String cs = GetCsFor( routeInfo );
return new MyDbContext( cs );
}, new PerHttpRequestLifetimeManager() )

Implementing Bounded Context with Entity Framework in a 3-Layer Architecture

I have watched Julie Lerman's videos about using EF in an enterprise application. Now I am developing a website using "Bounded Contexts" and other stuff she has taught in that series.
The problem is I do not know how to use bounded contexts (BC) from within my "Business Layer". To make it clearer: How should the BL know that which specific BC it should use.
Suppose the UI requests a list of products from the business layer. In BL I have a method that returns a list of products: GetAll(). This method does not know which part of the UI (site admin, moderator or public user) has requested the list of products. Since each user/scenario has its own bounded context, the list needs to be pulled using that related context. How should the BL choose the appropriate BC?
Moreover I do not want the UI layer to interact with data layer.
How can this be done?
If by business layer you mean a place where all your business rules are defined, then that is a bounded context.
A bounded context looks at your system from a certain angle so that business rules can be implemented in a compartmentalised fashion (with the goal that it is easier to handle the overall problem by splitting in to smaller chunks).
http://martinfowler.com/bliki/BoundedContext.html
Front-end
So assuming you have a ASP MVC front end, this controllers are the things that will call your use cases/user stories that are presented from the domain to be called via a standard known interface.
public class UserController : Controller
{
ICommandHandler<ChangeNameCommand> handler;
public UserController(ICommandHandler<ChangeNameCommand> handler)
{
this.handler = handler;
}
public ActionResult ChangeUserName(string id, string name)
{
try
{
var command = new ChangeNameCommand(id,name);
var data = handler.handle(command);
}
catch(Exception e)
{
// add error logging and display info
ViewBag.Error = e.Message;
}
// everything went OK, let the user know
return View("Index");
}
}
Domain Application (Use Cases)
Next, you would have an domain application entry point that implements the use case (this would be a command or query handler).
You may call this directly and have the code run in-process with your front end application, or you may have a WebAPI or WCF service in front of it presenting the domain application services. It doesn't really matter, how you the system is distrusted depends on the system requirements (it is often simpler from an infrastructure perspective to not to distribute if not needed).
The domain application layer then orchestrates the user story - it will new up repositories, fetch entities, perform an operation on them, and then write back to the repository. The code here should not be complex or contain logic.
public class NewUserHandler : ICommandHandler<ChangeNameCommand>
{
private readonly IRepository repository;
public NewUserHandler(IRepository repository)
{
this.repository = repository;
}
public void Handle(ChangeUserName command)
{
var userId = new UserId(command.UserId);
var user = this.repository.GetById<User>(userId);
user.ChangeName(command.NewName);
this.repository.Save(newUser);
}
}
Domain Model
The entities them selves implement their own business logic in the domain model. You may also have domain services for logic which doesn't naturally fit nicely inside an individual entity.
public class User
{
protected string Name;
protected DateTime NameLastChangedOn;
public ChangeName(string newName)
{
// not the best of business rules, just an example...
if((DateTime.UtcNow - NameLastChangedOn).Days < 30)
{
throw new DomainException("Cannot change name more than once every 30 days");
}
this.Name = newName;
this.NameLastChangedOn = DateTime.UtcNow;
}
}
Infrastructure
You would have infrastructure which implements the code to fetch and retrieve entities from your backing store. For you this is Entity Framework and the DbContext (my example code above is not using EF but you can substitute).
Answer to your question - Which bounded context should the front end application call?
Not to make the answer complex or long, but I included the above code to set the background and hope to make it easier to understand as I think the terms you are using are getting a little mixed up.
With the above code as you started implementing more command and query handlers, which bounded context is called from your front end application depends on what specific user story the user wishes to perform.
User stories will generally be clustered across different bounded contexts, so you would just select the command or query for the bounded context that implements the required functionality - don't worry about making it anything more complicated than that.
Let the problem you are trying to solve dictate the mapping, and dont be afraid that this mapping will possibly change as insight in to the problem you are looking to solve improves.
Sidenote
As a side note to mention things I found useful (I started my DDD journey with EF)... with entity framework there are ORM concepts that are often required such as defining mapping relationships and navigation properties between entities, and what happens with cascade deletes and updates. For me, this started to influence how I designed my entities, rather than the problem dictating how the entities should be designed. You may find this interesting: http://mehdi.me/ambient-dbcontext-in-ef6/
You may also want to look at http://geteventstore.com and event sourcing which takes away any headaches of ORM mapping (but comes with added complexity and workarounds needed to get acceptable performance). What is best to use depends on the situation, but its always good to know all the options.
I also use SimpleInjector to wire up my classes and inject in to the MVC controller (as a prebuilt Command or Query handler), more info here: https://cuttingedge.it/blogs/steven/pivot/entry.php?id=91.
Using an IoC container is a personal preference only and not set in stone.
This book is also awesome: https://vaughnvernon.co/?page_id=168
I mention the above as I started my DDD journey with EF and the exact same question you had.

OSGi services - best practice

I start loving OSGi services more and more and want to realize a lot more of my components as services. Now I'm looking for best-practice, especially for UI components.
For Listener-relations I use the whiteboard-pattern, which IMHO opinion is the best approach. However if I want more than just notifications, I can think of three possible solutions.
Imagine the following scenario:
interface IDatabaseService {
EntityManager getEntityManager();
}
[1] Whiteboard Pattern - with self setting service
I would create a new service interface:
interface IDatabaseServiceConsumer {
setDatabaseService(IDatabaseService service);
}
and create a declarative IDatabaseService component with a bindConsumer method like this
protected void bindConsumer(IDatabaseServiceConsumer consumer) {
consumer.setDatabaseService(this);
}
protected void unbindConsumer(IDatabaseServiceConsumer consumer) {
consumer.setDatabaseService(null);
}
This approach assumes that there's only one IDatabaseService.
[Update] Usage would look like this:
class MyUIClass ... {
private IDatabaseService dbService;
Consumer c = new IDatabaseServiceConsumer() {
setDatabaseService(IDatabaseService service) {
dbService = service;
}
}
Activator.registerService(IDatabaseServiceConsumer.class,c,null);
...
}
[2] Make my class a service
Image a class like
public class DatabaseEntryViewer extends TableViewer
Now, I just add bind/unbind methods for my IDatabaseService and add a component.xml and add my DatabaseEntryViewer. This approach assumes, that there is a non-argument constructor and I create the UI components via a OSGi-Service-Factory.
[3] Classic way: ServiceTracker
The classic way to register a static ServiceTracker in my Activator and access it. The class which uses the tracker must handle the dynamic.
Currently I'm favoring the first one, as this approach doesn't complicated object creation and saves the Activator from endless, static ServiceTrackers.
I have to agree with #Neil Bartlett, your option 1 is backward. You are in effect using an Observer/Observable pattern.
Number 2 is not going to work, since the way UI objects lifecycles are managed in RCP won't allow you to do what you want. The widget will have to be created as part of the initialization of some sort of view container (ViewPart, Dialog, ...). This view part is typically configured and managed via the Workbench/plugin mechanism. You should work with this, not against it.
Number 3 would be a simple option, not necessarily the best, but simple.
If you use Spring DM, then you can easily accomplish number 2. It provides a means to inject your service beans into your UI Views, Pages, etc. You use a spring factory to create your views (as defined in your plugin.xml), which is configured via a Spring configuration, which is capable of injecting your services into the bean.
You may also be able to combine the technique used by the SpringExtensionFactory class along with DI to accomplish the same thing, without introducing another piece of technology. I haven't tried it myself so I cannot comment on the difficulty, although it is what I would try to do to bridge the gap between RCP and OSGi if I wasn't already using Spring DM.

Autofac Session Scope

I am investigating the use of Autofac in our web application having previously used Castle Windsor in the past.
The thing that I really like with Autofac is being able to express dynamic component construction through lamda expressions, as opposed to creating DependancyResolvers etc. in Windsor.
One scenario I have is that I want a particular component to be registered at ASP.NET session level scope. With Windsor I would create/source a new LifestyleManager, however with Autofac I came up with this:
//Register SessionContext at HTTP Session Level
builder.Register(c =>
{
HttpContext current = HttpContext.Current;
//HttpContext handes delivering the correct session
Pelagon.Violet.Core.Interfaces.SessionContext instance = current.Session["SessionContext"] as Pelagon.Violet.Core.Interfaces.SessionContext;
if (instance == null)
{
instance = c.Resolve<Pelagon.Violet.Core.Interfaces.SessionContext>();
current.Session["SessionContext"] = instance;
}
return instance;
})
.FactoryScoped();
Which at some point I might be able to turn into an extension method. I accept this implemtation will bomb if the HttpContext.Current.Session is null as it should only be used in a web app.
The question is:
What is the best practice for such a registration in Autofac. I have seen a lot of mention about the use of nested containers etc. but no concrete examples, and I am keen to understand what might be wrong with the above approach (only thing I can think of is the automatic disposal stuff).
Thanks.
This looks fine.
Marking the component 'ExternallyOwned()' will ensure that Autofac doesn't call Dispose() on it.
The only gotchas here are that your session-scoped component could resolve dependencies of its own via the current container, and thus hold references to things that may belong to the current request (for instance.) This should be easy to spot in testing though.