string option to string conversion - type-conversion

How do I convert the string option data type to string in Ocaml?
let function1 data =
match data with
None -> ""
| Some str -> str
Is my implementation error free? Here 'data' has a value of type string option.

To answer your question, yes.
For this simple function, you can easily find it in Option module. For example, Option.default totally fits your purpose:
let get_string data =
Option.default "" data
There are many other useful functions for working with option types in that module, you should check them out to avoid redefine unnecessary functions.

Another point is that the compiler would tell you if there's something wrong. If the compiler doesn't complain, you know that the types all make sense and that you have covered every case in your match expression. The OCaml type system is exceptionally good at finding problems while staying out of your way. Note that you haven't had to define any types yourself in this small example--the compiler will infer that the type of data is string option.
A lot of the problems the compiler can't detect are ones that we can't detect either. We can't tell whether mapping None to the empty string is what you really wanted to do, though it seems very sensible.

Related

Simple dictionary of heterogeneous settings, ported from Clojure

I am porting a Clojure program to Swift. Being a dynamically typed language, it is easy to throw different values together like this:
(def settings {:total-gens 5
:name "Incredible Program"
:options [:a :b :c :d :e]
:final-comment "Hope you had a good time."})
I pass settings maps like this around in the program, and I wanted to have a fairly similar process in Swift.
Right away, I feel like I am fighting the type system and I'm wondering what is the most elegant way to do this.
Here are two options that were recommended to me, both of which seem verbose or strange:
1) First, make an enum type of all possible settings value types. Then, create a dictionary of String: SettingsEnumType. Every time I need to add a new type of value to my dictionary, I first need to change the enum definition, and then change the actual dictionary.
2) Instead, create an empty protocol with no requirements. Then extend values like Int, String, etc to adopt this protocol, even though it is really a "dummy" protocol. Then make my settings dictionary String : SettingsProtocol so I can add whatever type I want in there (after first extending the type).
Both of these options feel weird to me, like I'm trying to circumvent the type system rather than have it work for me. The second option is frankly silly, but would no doubt work as needed.
Are there any other possibilities for doing something like this? Additionally, would the String type be the only obvious type for the keys in a settings dictionary? In this case, Clojure has again spoiled me with the useful keyword type that simultaneously acts as a look-up function in addition to a value type.
Any advice/pointers appreciated as I consider this new language.
After referring to Array with string and number answer, I believe you can create a Heterogeneous Dictionary with below Syntax:
let heteroDict = Dictionary<Any, Any>()
Can you try this one?

How do purely functional compilers annotate the AST with type info?

In the syntax analysis phase, an imperative compiler can build an AST out of nodes that already contain a type field that is set to null during construction, and then later, in the semantic analysis phase, fill in the types by assigning the declared/inferred types into the type fields.
How do purely functional languages handle this, where you do not have the luxury of assignment? Is the type-less AST mapped to a different kind of type-enriched AST? Does that mean I need to define two types per AST node, one for the syntax phase, and one for the semantic phase?
Are there purely functional programming tricks that help the compiler writer with this problem?
I usually rewrite a source (or an already several steps lowered) AST into a new form, replacing each expression node with a pair (tag, expression).
Tags are unique numbers or symbols which are then used by the next pass which derives type equations from the AST. E.g., a + b will yield something like { numeric(Tag_a). numeric(Tag_b). equals(Tag_a, Tag_b). equals(Tag_e, Tag_a).}.
Then types equations are solved (e.g., by simply running them as a Prolog program), and, if successful, all the tags (which are variables in this program) are now bound to concrete types, and if not, they're left as type parameters.
In a next step, our previous AST is rewritten again, this time replacing tags with all the inferred type information.
The whole process is a sequence of pure rewrites, no need to replace anything in your AST destructively. A typical compilation pipeline may take a couple of dozens of rewrites, some of them changing the AST datatype.
There are several options to model this. You may use the same kind of nullable data fields as in your imperative case:
data Exp = Var Name (Maybe Type) | ...
parse :: String -> Maybe Exp -- types are Nothings here
typeCheck :: Exp -> Maybe Exp -- turns Nothings into Justs
or even, using a more precise type
data Exp ty = Var Name ty | ...
parse :: String -> Maybe (Exp ())
typeCheck :: Exp () -> Maybe (Exp Type)
I cant speak for how it is supposed to be done, but I did do this in F# for a C# compiler here
The approach was basically - build an AST from the source, leaving things like type information unconstrained - So AST.fs basically is the AST which strings for the type names, function names, etc.
As the AST starts to be compiled to (in this case) .NET IL, we end up with more type information (we create the types in the source - lets call these type-stubs). This then gives us the information needed to created method-stubs (the code may have signatures that include type-stubs as well as built in types). From here we now have enough type information to resolve any of the type names, or method signatures in the code.
I store that in the file TypedAST.fs. I do this in a single pass, however the approach may be naive.
Now we have a fully typed AST you could then do things like compile it, fully analyze it, or whatever you like with it.
So in answer to the question "Does that mean I need to define two types per AST node, one for the syntax phase, and one for the semantic phase?", I cant say definitively that this is the case, but it is certainly what I did, and it appears to be what MS have done with Roslyn (although they have essentially decorated the original tree with type info IIRC)
"Are there purely functional programming tricks that help the compiler writer with this problem?"
Given the ASTs are essentially mirrored in my case, it would be possible to make it generic and transform the tree, but the code may end up (more) horrendous.
i.e.
type 'type AST;
| MethodInvoke of 'type * Name * 'type list
| ....
Like in the case when dealing with relational databases, in functional programming it is often a good idea not to put everything in a single data structure.
In particular, there may not be a data structure that is "the AST".
Most probably, there will be data structures that represent parsed expressions. One possible way to deal with type information is to assign a unique identifier (like an integer) to each node of the tree already during parsing and have some suitable data structure (like a hash map) that associates those node-ids with types. The job of the type inference pass, then, would be just to create this map.

When to use type parameters within Scala?

Are functions which involve type paramters limited in their use to collections ?
Such as appending, removing and sorting of Lists of generic types ?
I find I rarely ever encounter a use case for type parameters but at same time feel that I may be missing something ?
This code :
object customType {
class MyClass[A] = {
def doFun(a : A) = {
}
}
}
The method doFun cannot actually perform anything on the type A (other than List operations)
as its type is unbouned/not known ?
Type parameters appear to be very powerful, but I would like to extend their use to not just type checking that
collections contain the correct types at compile time. Are there other common examples/patterns that display the use of
type parameters ?
The short answer is that it might not be useful to you if you are an application programmer. More often you will end up using a library that has used type parameters. They are useful for solving general patterns of coding (thus generics), thus why they are often in library code where the writer does not know what the end user will need.
That being said, you might want to read up on type classes, as they can be a decent way to solve some dependency problems even at application level coding. And, last...the pattern that types come in most handy for is the ...duh duh duh... monad pattern :), which is not nearly as scary as it's made out to be.

Why does Scala choose to have the types after the variable names?

In Scala variables are declared like:
var stockPrice: Double = 100.
Where the type (Double) follows the identifier (stockPrice). Traditionally in imperative languages such as C, Java, C#, the type name precedes the identifier.
double stock_price = 100.0;
Is it purely a matter of taste, or does having the type name in the end help the compiler in any way? Go also has the same style.
Kevin's got it right. The main observation is that the "type name" syntax works great as long as types are short keywords such as int or float:
int x = 1
float d = 0.0
For the price of one you get two pieces of information: "A new definition starts here", and "here's the (result) type of the definition". But we are way past the area of simple primitive types nowadays. If you write
HashMap<Shape, Pair<String, String>> shapeInfo = makeInfo()
the most important part of what you define (the name) is buried behind the type expression. Compare with
val shapeInfo: HashMap[Shape, (String, String)] = makeInfo()
It says clearly
We define a value here, not a variable or method (val)
The name of the thing we define is shapeInfo
If you care about it, here's the type (HashMap[...])
As well as supporting type inference, this has an ergonomic benefit too.
For any given variable name + type, chances are that the name is the more important piece of information. Moving it to the left makes it more prominent, and the code more readable once you're accustomed to the style.
Other ergonomic benefits:
With val, var or def before member names, instead of their type, they all neatly line up in a column.
If you change just the type of a member, or drop it entirely in favour of inference, then a fine-grained diff tool will clearly show that the name is unaltered
Likewise, changing between a val/var/def is very clear in diffs
inference should be considered default behaviour in Scala, you only need type specifications in certain specific scenarios, even then it's mostly done for the compiler. So putting them at the very start of a declaration emphasises the wrong thing.
"name: Type" instead of "Type name" more closely matches the way most programmers will actually think about a declaration, it's more natural.
The differing C/C++ and Java conventions for pointers and arrays (i.e * being a prefix on the following name and not a suffix on the preceeding type in C/C++, or [] being a valid suffix on both names and types in Java) are still confusing to newcomers or language converts, and cause some very real errors when declaring multiple variables on a single line. Scala leaves no room for doubt and confusion here.
It's afterwards so that it can be removed for type inference:
var stockPrice: Double = 100.0
var stockPrice = 100.0
However, it is not true that imperative languages traditionally have types first. For example, Pascal doesn't.
Now, C does it, and C++, Java and C# are based on C's syntax, so naturally they do it that way too, but that has absolutely nothing to do with imperative languages.
It should be noted that even C doesn't "traditionally" define the type before the variable name, but indeed allows the declarations to be interleaved.
int foo[];
where the type for foo is declared both before and after it, lexically.
Beyond that, I'm guessing this is a distinction without a difference. The compiler developers certainly couldn't care one way or another.

What is the difference between a strongly typed language and a statically typed language?

Also, does one imply the other?
What is the difference between a strongly typed language and a statically typed language?
A statically typed language has a type system that is checked at compile time by the implementation (a compiler or interpreter). The type check rejects some programs, and programs that pass the check usually come with some guarantees; for example, the compiler guarantees not to use integer arithmetic instructions on floating-point numbers.
There is no real agreement on what "strongly typed" means, although the most widely used definition in the professional literature is that in a "strongly typed" language, it is not possible for the programmer to work around the restrictions imposed by the type system. This term is almost always used to describe statically typed languages.
Static vs dynamic
The opposite of statically typed is "dynamically typed", which means that
Values used at run time are classified into types.
There are restrictions on how such values can be used.
When those restrictions are violated, the violation is reported as a (dynamic) type error.
For example, Lua, a dynamically typed language, has a string type, a number type, and a Boolean type, among others. In Lua every value belongs to exactly one type, but this is not a requirement for all dynamically typed languages. In Lua, it is permissible to concatenate two strings, but it is not permissible to concatenate a string and a Boolean.
Strong vs weak
The opposite of "strongly typed" is "weakly typed", which means you can work around the type system. C is notoriously weakly typed because any pointer type is convertible to any other pointer type simply by casting. Pascal was intended to be strongly typed, but an oversight in the design (untagged variant records) introduced a loophole into the type system, so technically it is weakly typed.
Examples of truly strongly typed languages include CLU, Standard ML, and Haskell. Standard ML has in fact undergone several revisions to remove loopholes in the type system that were discovered after the language was widely deployed.
What's really going on here?
Overall, it turns out to be not that useful to talk about "strong" and "weak". Whether a type system has a loophole is less important than the exact number and nature of the loopholes, how likely they are to come up in practice, and what are the consequences of exploiting a loophole. In practice, it's best to avoid the terms "strong" and "weak" altogether, because
Amateurs often conflate them with "static" and "dynamic".
Apparently "weak typing" is used by some persons to talk about the relative prevalance or absence of implicit conversions.
Professionals can't agree on exactly what the terms mean.
Overall you are unlikely to inform or enlighten your audience.
The sad truth is that when it comes to type systems, "strong" and "weak" don't have a universally agreed on technical meaning. If you want to discuss the relative strength of type systems, it is better to discuss exactly what guarantees are and are not provided.
For example, a good question to ask is this: "is every value of a given type (or class) guaranteed to have been created by calling one of that type's constructors?" In C the answer is no. In CLU, F#, and Haskell it is yes. For C++ I am not sure—I would like to know.
By contrast, static typing means that programs are checked before being executed, and a program might be rejected before it starts. Dynamic typing means that the types of values are checked during execution, and a poorly typed operation might cause the program to halt or otherwise signal an error at run time. A primary reason for static typing is to rule out programs that might have such "dynamic type errors".
Does one imply the other?
On a pedantic level, no, because the word "strong" doesn't really mean anything. But in practice, people almost always do one of two things:
They (incorrectly) use "strong" and "weak" to mean "static" and "dynamic", in which case they (incorrectly) are using "strongly typed" and "statically typed" interchangeably.
They use "strong" and "weak" to compare properties of static type systems. It is very rare to hear someone talk about a "strong" or "weak" dynamic type system. Except for FORTH, which doesn't really have any sort of a type system, I can't think of a dynamically typed language where the type system can be subverted. Sort of by definition, those checks are bulit into the execution engine, and every operation gets checked for sanity before being executed.
Either way, if a person calls a language "strongly typed", that person is very likely to be talking about a statically typed language.
This is often misunderstood so let me clear it up.
Static/Dynamic Typing
Static typing is where the type is bound to the variable. Types are checked at compile time.
Dynamic typing is where the type is bound to the value. Types are checked at run time.
So in Java for example:
String s = "abcd";
s will "forever" be a String. During its life it may point to different Strings (since s is a reference in Java). It may have a null value but it will never refer to an Integer or a List. That's static typing.
In PHP:
$s = "abcd"; // $s is a string
$s = 123; // $s is now an integer
$s = array(1, 2, 3); // $s is now an array
$s = new DOMDocument; // $s is an instance of the DOMDocument class
That's dynamic typing.
Strong/Weak Typing
(Edit alert!)
Strong typing is a phrase with no widely agreed upon meaning. Most programmers who use this term to mean something other than static typing use it to imply that there is a type discipline that is enforced by the compiler. For example, CLU has a strong type system that does not allow client code to create a value of abstract type except by using the constructors provided by the type. C has a somewhat strong type system, but it can be "subverted" to a degree because a program can always cast a value of one pointer type to a value of another pointer type. So for example, in C you can take a value returned by malloc() and cheerfully cast it to FILE*, and the compiler won't try to stop you—or even warn you that you are doing anything dodgy.
(The original answer said something about a value "not changing type at run time". I have known many language designers and compiler writers and have not known one that talked about values changing type at run time, except possibly some very advanced research in type systems, where this is known as the "strong update problem".)
Weak typing implies that the compiler does not enforce a typing discpline, or perhaps that enforcement can easily be subverted.
The original of this answer conflated weak typing with implicit conversion (sometimes also called "implicit promotion"). For example, in Java:
String s = "abc" + 123; // "abc123";
This is code is an example of implicit promotion: 123 is implicitly converted to a string before being concatenated with "abc". It can be argued the Java compiler rewrites that code as:
String s = "abc" + new Integer(123).toString();
Consider a classic PHP "starts with" problem:
if (strpos('abcdef', 'abc') == false) {
// not found
}
The error here is that strpos() returns the index of the match, being 0. 0 is coerced into boolean false and thus the condition is actually true. The solution is to use === instead of == to avoid implicit conversion.
This example illustrates how a combination of implicit conversion and dynamic typing can lead programmers astray.
Compare that to Ruby:
val = "abc" + 123
which is a runtime error because in Ruby the object 123 is not implicitly converted just because it happens to be passed to a + method. In Ruby the programmer must make the conversion explicit:
val = "abc" + 123.to_s
Comparing PHP and Ruby is a good illustration here. Both are dynamically typed languages but PHP has lots of implicit conversions and Ruby (perhaps surprisingly if you're unfamiliar with it) doesn't.
Static/Dynamic vs Strong/Weak
The point here is that the static/dynamic axis is independent of the strong/weak axis. People confuse them probably in part because strong vs weak typing is not only less clearly defined, there is no real consensus on exactly what is meant by strong and weak. For this reason strong/weak typing is far more of a shade of grey rather than black or white.
So to answer your question: another way to look at this that's mostly correct is to say that static typing is compile-time type safety and strong typing is runtime type safety.
The reason for this is that variables in a statically typed language have a type that must be declared and can be checked at compile time. A strongly-typed language has values that have a type at run time, and it's difficult for the programmer to subvert the type system without a dynamic check.
But it's important to understand that a language can be Static/Strong, Static/Weak, Dynamic/Strong or Dynamic/Weak.
Both are poles on two different axis:
strongly typed vs. weakly typed
statically typed vs. dynamically typed
Strongly typed means, a variable will not be automatically converted from one type to another. Weakly typed is the opposite: Perl can use a string like "123" in a numeric context, by automatically converting it into the int 123. A strongly typed language like python will not do this.
Statically typed means, the compiler figures out the type of each variable at compile time. Dynamically typed languages only figure out the types of variables at runtime.
Strongly typed means that there are restrictions between conversions between types.
Statically typed means that the types are not dynamic - you can not change the type of a variable once it has been created.
Answer is already given above. Trying to differentiate between strong vs week and static vs dynamic concept.
What is Strongly typed VS Weakly typed?
Strongly Typed: Will not be automatically converted from one type to another
In Go or Python like strongly typed languages "2" + 8 will raise a type error, because they don't allow for "type coercion".
Weakly (loosely) Typed: Will be automatically converted to one type to another:
Weakly typed languages like JavaScript or Perl won't throw an error and in this case JavaScript will results '28' and perl will result 10.
Perl Example:
my $a = "2" + 8;
print $a,"\n";
Save it to main.pl and run perl main.pl and you will get output 10.
What is Static VS Dynamic type?
In programming, programmer define static typing and dynamic typing with respect to the point at which the variable types are checked. Static typed languages are those in which type checking is done at compile-time, whereas dynamic typed languages are those in which type checking is done at run-time.
Static: Types checked before run-time
Dynamic: Types checked on the fly, during execution
What is this means?
In Go it checks typed before run-time (static check). This mean it not only translates and type-checks code it’s executing, but it will scan through all the code and type error would be thrown before the code is even run. For example,
package main
import "fmt"
func foo(a int) {
if (a > 0) {
fmt.Println("I am feeling lucky (maybe).")
} else {
fmt.Println("2" + 8)
}
}
func main() {
foo(2)
}
Save this file in main.go and run it, you will get compilation failed message for this.
go run main.go
# command-line-arguments
./main.go:9:25: cannot convert "2" (type untyped string) to type int
./main.go:9:25: invalid operation: "2" + 8 (mismatched types string and int)
But this case is not valid for Python. For example following block of code will execute for first foo(2) call and will fail for second foo(0) call. It's because Python is dynamically typed, it only translates and type-checks code it’s executing on. The else block never executes for foo(2), so "2" + 8 is never even looked at and for foo(0) call it will try to execute that block and failed.
def foo(a):
if a > 0:
print 'I am feeling lucky.'
else:
print "2" + 8
foo(2)
foo(0)
You will see following output
python main.py
I am feeling lucky.
Traceback (most recent call last):
File "pyth.py", line 7, in <module>
foo(0)
File "pyth.py", line 5, in foo
print "2" + 8
TypeError: cannot concatenate 'str' and 'int' objects
Data Coercion does not necessarily mean weakly typed because sometimes its syntacical sugar:
The example above of Java being weakly typed because of
String s = "abc" + 123;
Is not weakly typed example because its really doing:
String s = "abc" + new Integer(123).toString()
Data coercion is also not weakly typed if you are constructing a new object.
Java is a very bad example of weakly typed (and any language that has good reflection will most likely not be weakly typed). Because the runtime of the language always knows what the type is (the exception might be native types).
This is unlike C. C is the one of the best examples of weakly typed. The runtime has no idea if 4 bytes is an integer, a struct, a pointer or a 4 characters.
The runtime of the language really defines whether or not its weakly typed otherwise its really just opinion.
EDIT:
After further thought this is not necessarily true as the runtime does not have to have all the types reified in the runtime system to be a Strongly Typed system.
Haskell and ML have such complete static analysis that they can potential ommit type information from the runtime.
One does not imply the other. For a language to be statically typed it means that the types of all variables are known or inferred at compile time.
A strongly typed language does not allow you to use one type as another. C is a weakly typed language and is a good example of what strongly typed languages don't allow. In C you can pass a data element of the wrong type and it will not complain. In strongly typed languages you cannot.
Strong typing probably means that variables have a well-defined type and that there are strict rules about combining variables of different types in expressions. For example, if A is an integer and B is a float, then the strict rule about A+B might be that A is cast to a float and the result returned as a float. If A is an integer and B is a string, then the strict rule might be that A+B is not valid.
Static typing probably means that types are assigned at compile time (or its equivalent for non-compiled languages) and cannot change during program execution.
Note that these classifications are not mutually exclusive, indeed I would expect them to occur together frequently. Many strongly-typed languages are also statically-typed.
And note that when I use the word 'probably' it is because there are no universally accepted definitions of these terms. As you will already have seen from the answers so far.
Imho, it is better to avoid these definitions altogether, not only there is no agreed upon definition of the terms, definitions that do exist tend to focus on technical aspects for example, are operation on mixed type allowed and if not is there a loophole that bypasses the restrictions such as work your way using pointers.
Instead, and emphasizing again that it is an opinion, one should focus on the question: Does the type system make my application more reliable? A question which is application specific.
For example: if my application has a variable named acceleration, then clearly if the way the variable is declared and used allows the assignment of the value "Monday" to acceleration it is a problem, as clearly an acceleration cannot be a weekday (and a string).
Another example: In Ada one can define: subtype Month_Day is Integer range 1..31;, The type Month_Day is weak in the sense that it is not a separate type from Integer (because it is a subtype), however it is restricted to the range 1..31. In contrast: type Month_Day is new Integer; will create a distinct type, which is strong in the sense that that it cannot be mixed with integers without explicit casting - but it is not restricted and can receive the value -17 which is senseless. So technically it is stronger, but is less reliable.
Of course, one can declare type Month_Day is new Integer range 1..31; to create a type which is distinct and restricted.