lisp code excerpt - lisp

i've been reading some lisp code and came across this section, didn't quite understand what it specifically does, though the whole function is supposed to count how many times the letters from a -z appear in an entered text.
(do ((i #.(char-code #\a) (1+ i)))
((> i #.(char-code #\z)))
can anyone explain step by step what is happening? I know that it's somehow counting the letters but not quite sure how.

This Lisp code is slightly unusual, since it uses read-time evaluation. #.expr means that the expression will be evaluated only once, during read-time.
In this case a clever compiler might have guessed that the character code of a given character is known and could have removed the computation of character codes from the DO loop. The author of that code chose to do that by evaluating the expressions before the compiler sees it.
The source looks like this:
(do ((i #.(char-code #\a) (1+ i)))
((> i #.(char-code #\z)))
...)
When Lisp reads in the s-expression, we get this new code as the result (assuming a usual encoding of characters):
(do ((i 97 (1+ i)))
((> i 122))
...)
So that's a loop which counts the variable i up from 97 to 122.

Lisp codes are written as S-Expression. In a typical S-Expression sytax, the first element of any S-expression is treated as operator and the rest as operand. Operands can either be an atom or another S-expression. Please note, an atom is a single data object. Keeping this in mind
char-code
(char-code #\a) - returns the ascii representation of a character here its 'a'.
The do syntax looks similar to the below
(do ((var1 init1 step1)
(var2 init2 step2)
...)
(end-test result)
statement1
...)
So in your example
(do ((i #.(char-code #\a) (1+ i)))
((> i #.(char-code #\z)))
)
The first s-expression operand of do is the loop initialization, the second s-expression operand is the end-test.
So this means you are simply iterating over 'a' through 'z' incrementing i by 1.
In C++ (Not sure your other language comfort level, you can write
for(i='a';i<='z';i++);

the trick with the code you show is in poor form. i know this because i do it all
the time. the code makes an assumtion that the compiler will know the current fixnum
for each character. #.(char-code #\a) eq [(or maybe eql if you are so inclided) unsigned small integer or unsigned 8 bit character with a return value of a positive fixnum].
The # is a reader macro (I'm fairly sure you know this :). Using two reader macros is
not a great idea but it is fast when the compiler knows the datatype.
I have another example. Need to search for ascii in a binary stream:
(defmacro code-char= (byte1 byte2)
(flet ((maybe-char-code (x) (if characterp x) (char-code x) x)))
`(the fixnum (= (the fixnum ,(maybe-char-code byte1)
(the fixnum ,(maybe-char-code byte2)))))
))
Declaring the return type in sbcl will probably insult the complier, but I leave it as a sanity check (4 me not u).
(code-char= #\$ #x36)
=>
t
. At least I think so. But somehow I think you might know your way around some macros ... Hmmmm... I should turn on the machine...
If you're seriously interested, there is some assembler for the 286 (8/16 bit dos assembler) that you can use a jump table. It works fast for the PC , I'd have to look it up...

Related

Find max in lisp

I am trying to do Recursive method to find max value in list.
Can anyone explain where I made the mistake on this code and how to approach it next time.
(defun f3 (i)
(setq x (cond (> (car (I)) (cdr (car (I))))
(f3 (cdr (I)))))
)
(f3 '(33 11 44 2) )
also I tried this following method and didn't work:
(defun f3 (i)
(cond ((null I )nil )
(setq x (car (i))
(f3(cdr (i)))
(return-from max x)
)
Thanks a lot for any help. I am coming from java if that helps.
If you're working in Common Lisp, then you do this:
(defun max-item (list)
(loop for item in list
maximizing item))
That's it. The maximizing item clause of loop determines the highest item value seen, and implicitly establishes that as the result value of loop when it terminates.
Note that if list is empty, then this returns nil. If you want some other behavior, you have to work that in:
(if list
(loop for item in list
maximizing item))
(... handle empty here ...))
If the number of elements in the list is known to be small, below your Lisp implementation's limit on the number of arguments that can be passed to a function, you can simply apply the list to the max function:
(defun max-item (list)
(apply #'max list))
If list is empty, then max is misused: it requires one or more arguments. An error condition will likely be signaled. If that doesn't work in your situation, you need to add code to supply the desired behavior.
If the list is expected to be large, so that this approach is to be avoided, you can use reduce, treating max as a binary function:
(defun max-item (list)
(reduce #'max list))
Same remarks regarding empty list. These expressions are so small, many programmers will avoid writing a function and just use them directly.
Regarding recursion, you wouldn't use recursion to solve this problem in production code, only as a homework exercise for learning about recursion.
You are trying to compute the maximum value of a list, so please name your function maximum and your parameter list, not f3 or i. You can't name the function max without having to consider how to avoid shadowing the standard max function, so it is best for now to ignore package issues and use a different name.
There is a corner case to consider when the list is empty, as there is no meaningful value to return. You have to decide if you return nil or signal an error, for example.
The skeleton is thus:
(defun maximum (list)
(if (null list)
...
...))
Notice how closing parentheses are never preceded by spaces (or newlines), and opening parentheses are never followed by spaces (or newlines). Please note also that indentation increases with the current depth . This is the basic rules for Lisp formatting, please try following them for other developers.
(setq x <value>)
You are assigning an unknown place x, you should instead bind a fresh variable if you want to have a temporary variable, something like:
(let ((x <value>))
<body>)
With the above expression, x is bound to <value> inside <body> (one or more expressions), and only there.
(car (i))
Unlike in Java, parentheses are not used to group expressions for readability or to force some evaluation order, in Lisp they enclose compound forms. Here above, in a normal evaluation context (not a macro or binding), (i) means call function i, and this function is unrelated to your local variable i (just like in Java, where you can write int f = f(2) with f denoting both a variable and a method).
If you want to take the car of i, write (car i).
You seem to be using cond as some kind of if:
(cond (<test> <then>) <else>) ;; WRONG
You can have an if as follows:
(if <test> <then> <else>)
For example:
(if (> u v) u v) ;; evaluates to either `u` or `v`, whichever is greater
The cond syntax is a bit more complex but you don't need it yet.
You cannot return-from a block that was undeclared, you probably renamed the function to f3 without renaming that part, or copied that from somewhere else, but in any case return-from is only needed when you have a bigger function and probably a lot more side-effects. Here the computation can be written in a more functionnal way. There is an implicit return in Lisp-like languages, unlike Java, for example below the last (but also single) expression in add evaluates to the function's return value:
(defun add-3 (x)
(+ x 3))
Start with smaller examples and test often, fix any error the compiler or interpreter prints before trying to do more complex things. Also, have a look at the available online resources to learn more about the language: https://common-lisp.net/documentation
Although the other answers are right: you definitely need to learn more CL syntax and you probably would not solve this problem recursively in idiomatic CL (whatever 'idiomatic CL' is), here's how to actually do it, because thinking about how to solve these problems recursively is useful.
First of all let's write a function max/2 which returns the maximum of two numbers. This is pretty easy:
(defun max/2 (a b)
(if (> a b) a b))
Now the trick is this: assume you have some idea of what the maximum of a list of numbers is: call this guess m. Then:
if the list is empty, the maximum is m;
otherwise the list has a first element, so pick a new m which is the maximum of the first element of the list and the current m, and recurse on the rest of the list.
So, we can write this function, which I'll call max/carrying (because it 'carries' the m):
(defun max/carrying (m list)
(if (null list)
m
(max/carrying (max/2 (first list) m)
(rest list))))
And this is now almost all we need. The trick is then to write a little shim around max/carrying which bootstraps it:
to compute the maximum of a list:
if the list is empty it has no maximum, and this is an error;
otherwise the result is max/carrying of the first element of the list and the rest of the list.
I won't write that, but it's pretty easy (to signal an error, the function you want is error).

Lisp - "list 'if x y nil" what is usage of the tick (') symbol and "list" function here?

I am taking a programming language principle class where the professor talks about macro using Lisp (Precisly, Elisp). However, he didn't teach us how to write this language. As a result, I am trying to learn myself.
However, there are something that I just can't understand regarding the use of "tick" (') in Lisp. I do, however, understand the basic use. For example, if we have (cdr '(a b c)) it will give us a list (b c). Without the tick symbol, (a b c) would be evaluated as a function.
In the code written by my professor, I have noticed a strange use of "tick" symbol that I can't really understand the usage:
; not sure why there is a "'" in front of if and it is being added to a list ??
(defmacro myand(x y) (list 'if x y nil))
; Another example. Tick symbol before "greater than" symbol ? and made into a list?
(list 'if (list '> x y))
The uses of list and tick symbol just doesn't really make sense to me. Can anyone explain what is going on here? I suppose this is something special to Lisp
The 'tick symbol' is ': '<x> is syntactic sugar for (quote <x>) for any <x>. And (quote <x>) is simply <x> for any object <x>.
quote is needed in Lisp because programs in Lisp often want to reason about things which would have meaning as parts of Lisp programs, and need to say 'this isn't part of this program: it's data'. So, for instance, if I have a list of the form
((a . 1) (b . 2) ... (x . 26)) and I want to look up a symbol in it, I might write a function like this:
(defun ass (key alist)
(if (null? alist)
'()
(if (eql (car (car alist)) key)
(car alist)
(ass key (cdr alist)))))
Then when I wanted to look up, say x, I would have to say (ass (quote x) ...) because if I said (ass x ...) then x would be treated as a variable, and I don't want that: I want the symbol x.
In your example you are looking at programs which write Lisp programs – macros in other words – and these programs need to spend a lot of their time manipulating what will be Lisp source code as data. So in your myand macro, what you want is that
(myand x y)
should be rewritten as
(if x y nil)
Which is the same thing. So to construct this you need a list of four elements: the symbol if, the two variables and the symbol nil. Well you can make a list with list:
(list 'if x y 'nil)
Except that it turns out that the value of the symbol nil is just itself (nil is rather special in many Lisps in fact), so you can not bother quoting that: (list 'if x y nil) (I personally would have quoted it in this case, to make it clear what was literal and what was being evaluated, but that's probably not common).

lisp: concat arbitrary number of lists

In my ongoing quest to recreate lodash in lisp as a way of getting familiar with the language I am trying to write a concat-list function that takes an initial list and an arbitrary number of additional lists and concatenates them.
I'm sure that this is just a measure of getting familiar with lisp convention, but right now my loop is just returning the second list in the argument list, which makes sense since it is the first item of other-lists.
Here's my non-working code (edit: refactored):
(defun concat-list (input-list &rest other-lists)
;; takes an arbitrary number of lists and merges them
(loop
for list in other-lists
append list into input-list
return input-list
)
)
Trying to run (concat-list '(this is list one) '(this is list two) '(this is list three)) and have it return (this is list one this is list two this is list three).
How can I spruce this up to return the final, merged list?
The signature of your function is a bit unfortunate, it becomes easier if you don't treat the first list specially.
The easy way:
(defun concat-lists (&rest lists)
(apply #'concatenate 'list lists))
A bit more lower level, using loop:
(defun concat-lists (&rest lists)
(loop :for list :in lists
:append list))
Going lower, using dolist:
(defun concat-lists (&rest lists)
(let ((result ()))
(dolist (list lists (reverse result))
(setf result (revappend list result)))))
Going even lower would maybe entail implementing revappend yourself.
It's actually good style in Lisp not to use LABELS based iteration, since a) it's basically a go-to like low-level iteration style and it's not everywhere supported. For example the ABCL implementation of Common Lisp on the JVM does not support TCO last I looked. Lisp has wonderful iteration facilities, which make the iteration intention clear:
CL-USER 217 > (defun my-append (&rest lists &aux result)
(dolist (list lists (nreverse result))
(dolist (item list)
(push item result))))
MY-APPEND
CL-USER 218 > (my-append '(1 2 3) '(4 5 6) '(7 8 9))
(1 2 3 4 5 6 7 8 9)
Some pedagogical solutions to this problem
If you just want to do this, then use append, or nconc (destructive), which are the functions which do it.
If you want to learn how do to it, then learning about loop is not how to do that, assuming you want to learn Lisp: (loop for list in ... append list) really teaches you nothing but how to write a crappy version of append using arguably the least-lispy part of CL (note I have nothing against loop & use it a lot, but if you want to learn lisp, learning loop is not how to do that).
Instead why not think about how you would write this if you did not have the tools to do it, in a Lispy way.
Well, here's how you might do that:
(defun append-lists (list &rest more-lists)
(labels ((append-loop (this more results)
(if (null this)
(if (null more)
(nreverse results)
(append-loop (first more) (rest more) results))
(append-loop (rest this) more (cons (first this) results)))))
(append-loop list more-lists '())))
There's a dirty trick here: I know that results is completely fresh so I am using nreverse to reverse it, which does so destructively. Can we write nreverse? Well, it's easy to write reverse, the non-destructive variant:
(defun reverse-nondestructively (list)
(labels ((r-loop (tail reversed)
(if (null tail)
reversed
(r-loop (rest tail) (cons (first tail) reversed)))))
(r-loop list '())))
And it turns out that a destructive reversing function is only a little harder:
(defun reverse-destructively (list)
(labels ((rd-loop (tail reversed)
(if (null tail)
reversed
(let ((rtail (rest tail)))
(setf (rest tail) reversed)
(rd-loop rtail tail)))))
(rd-loop list '())))
And you can check it works:
> (let ((l (make-list 1000 :initial-element 1)))
(time (reverse-destructively l))
(values))
Timing the evaluation of (reverse-destructively l)
User time = 0.000
System time = 0.000
Elapsed time = 0.000
Allocation = 0 bytes
0 Page faults
Why I think this is a good approach to learning Lisp
[This is a response to a couple of comments which I thought was worth adding to the answer: it is, of course, my opinion.]
I think that there are at least three different reasons for wanting to solve a particular problem in a particular language, and the approach you might want to take depends very much on what your reason is.
The first reason is because you want to get something done. In that case you want first of all to find out if it has been done already: if you want to do x and the language a built-in mechanism for doing x then use that. If x is more complicated but there is some standard or optional library which does it then use that. If there's another language you could use easily which does x then use that. Writing a program to solve the problem should be something you do only as a last resort.
The second reason is because you've fallen out of the end of the first reason, and you now find yourself needing to write a program. In that case what you want to do is use all of the tools the language provides in the best way to solve the problem, bearing in mind things like maintainability, performance and so on. In the case of CL, then if you have some problem which naturally involves looping, then, well, use loop if you want to. It doesn't matter whether loop is 'not lispy' or 'impure' or 'hacky': just do what you need to do to get the job done and make the code maintainable. If you want to print some list of objects, then by all means write (format t "~&~{~A~^, ~}~%" things).
The third reason is because you want to learn the language. Well, assuming you can program in some other language there are two approaches to doing this.
the first is to say 'I know how to do this thing (write loops, say) in languages I know – how do I do it in Lisp?', and then iterate this for all the thing you already know how to do in some other language;
the second is to say 'what is it that makes Lisp distinctive?' and try and understand those things.
These approaches result in very approaches to learning. In particular I think the first approach is often terrible: if the language you know is, say, Fortran, then you'll end up writing Fortran dressed up as Lisp. And, well, there are perfectly adequate Fortran compilers out there: why not use them? Even worse, you might completely miss important aspects of the language and end up writing horrors like
(defun sum-list (l)
(loop for i below (length l)
summing (nth i l)))
And you will end up thinking that Lisp is slow and pointless and return to the ranks of the heathen where you will spread such vile calumnies until, come the great day, the golden Lisp horde sweeps it all away. This has happened.
The second approach is to ask, well, what are the things that are interesting about Lisp? If you can program already, I think this is a much better approach to the first, because learning the interesting and distinctive features of a language first will help you understand, as quickly as possible, whether its a language you might actually want to know.
Well, there will inevitably be argument about what the interesting & distinctive features of Lisp are, but here's a possible, partial, set.
The language has a recursively-defined data structure (S expressions or sexprs) at its heart, which is used among other things to represent the source code of the language itself. This representation of the source is extremely low-commitment: there's nothing in the syntax of the language which says 'here's a block' or 'this is a conditiona' or 'this is a loop'. This low-commitment can make the language hard to read, but it has huge advantages.
Recursive processes are therefore inherently important and the language is good at expressing them. Some variants of the language take this to the extreme by noticing that iteration is simply a special case of recursion and have no iterative constructs at all (CL does not do this).
There are symbols, which are used as names for things both in the language itself and in programs written in the language (some variants take this more seriously than others: CL takes it very seriously).
There are macros. This really follows from the source code of the language being represented as sexprs and this structure having a very low commitment to what it means. Macros, in particular, are source-to-source transformations, with the source being represented as sexprs, written in the language itself: the macro language of Lisp is Lisp, without restriction. Macros allow the language itself to be seamlessly extended: solving problems in Lisp is done by designing a language in which the problem can be easily expressed and solved.
The end result of this is, I think two things:
recursion, in addition to and sometimes instead of iteration is an unusually important technique in Lisp;
in Lisp, programming means building a programming language.
So, in the answer above I've tried to give you examples of how you might think about solving problems involving a recursive data structure recursively: by defining a local function (append-loop) which then recursively calls itself to process the lists. As Rainer pointed out that's probably not a good way of solving this problem in Common Lisp as it tends to be hard to read and it also relies on the implementation to turn tail calls into iteration which is not garuanteed in CL. But, if your aim is to learn to think the way Lisp wants you to think, I think it is useful: there's a difference between code you might want to write for production use, and code you might want to read and write for pedagogical purposes: this is pedagogical code.
Indeed, it's worth looking at the other half of how Lisp might want you to think to solve problems like this: by extending the language. Let's say that you were programming in 1960, in a flavour of Lisp which has no iterative constructs other than GO TO. And let's say you wanted to process some list iteratively. Well, you might write this (this is in CL, so it is not very like programming in an ancient Lisp would be: in CL tagbody establishes a lexical environment in the body of which you can have tags – symbols – and then go will go to those tags):
(defun print-list-elements (l)
;; print the elements of a list, in order, using GO
(let* ((tail l)
(current (first tail)))
(tagbody
next
(if (null tail)
(go done)
(progn
(print current)
(setf tail (rest tail)
current (first tail))
(go next)))
done)))
And now:
> (print-list-elements '(1 2 3))
1
2
3
nil
Let's program like it's 1956!
So, well, let's say you don't like writing this sort of horror. Instead you'd like to be able to write something like this:
(defun print-list-elements (l)
;; print the elements of a list, in order, using GO
(do-list (e l)
(print e)))
Now if you were using most other languages you need to spend several weeks mucking around with the compiler to do this. But in Lisp you spend a few minutes writing this:
(defmacro do-list ((v l &optional (result-form nil)) &body forms)
;; Iterate over a list. May be buggy.
(let ((tailn (make-symbol "TAIL"))
(nextn (make-symbol "NEXT"))
(donen (make-symbol "DONE")))
`(let* ((,tailn ,l)
(,v (first ,tailn)))
(tagbody
,nextn
(if (null ,tailn)
(go ,donen)
(progn
,#forms
(setf ,tailn (rest ,tailn)
,v (first ,tailn))
(go ,nextn)))
,donen
,result-form))))
And now your language has an iteration construct which it previously did not have. (In real life this macro is called dolist).
And you can go further: given our do-list macro, let's see how we can collect things into a list:
(defun collect (thing)
;; global version: just signal an error
(declare (ignorable thing))
(error "not collecting"))
(defmacro collecting (&body forms)
;; Within the body of this macro, (collect x) will collect x into a
;; list, which is returned from the macro.
(let ((resultn (make-symbol "RESULT"))
(rtailn (make-symbol "RTAIL")))
`(let ((,resultn '())
(,rtailn nil))
(flet ((collect (thing)
(if ,rtailn
(setf (rest ,rtailn) (list thing)
,rtailn (rest ,rtailn))
(setf ,resultn (list thing)
,rtailn ,resultn))
thing))
,#forms)
,resultn)))
And now we can write the original append-lists function entirely in terms of constructs we've invented:
(defun append-lists (list &rest more-lists)
(collecting
(do-list (e list) (collect e))
(do-list (l more-lists)
(do-list (e l)
(collect e)))))
If that's not cool then nothing is.
In fact we can get even more carried away. My original answer above used labels to do iteration As Rainer has pointed out, this is not safe in CL since CL does not mandate TCO. I don't particularly care about that (I am happy to use only CL implementations which mandate TCO), but I do care about the problem that using labels this way is hard to read. Well, you can, of course, hide this in a macro:
(defmacro looping ((&rest bindings) &body forms)
;; A sort-of special-purpose named-let.
(multiple-value-bind (vars inits)
(loop for b in bindings
for var = (typecase b
(symbol b)
(cons (car b))
(t (error "~A is hopeless" b)))
for init = (etypecase b
(symbol nil)
(cons (unless (null (cddr b))
(error "malformed binding ~A" b))
(second b))
(t
(error "~A is hopeless" b)))
collect var into vars
collect init into inits
finally (return (values vars inits)))
`(labels ((next ,vars
,#forms))
(next ,#inits))))
And now:
(defun append-lists (list &rest more-lists)
(collecting
(looping ((tail list) (more more-lists))
(if (null tail)
(unless (null more)
(next (first more) (rest more)))
(progn
(collect (first tail))
(next (rest tail) more))))))
And, well, I just think it is astonishing that I get to use a programming language where you can do things like this.
Note that both collecting and looping are intentionally 'unhygenic': they introduce a binding (for collect and next respectively) which is visible to code in their bodies and which would shadow any other function definition of that name. That's fine, in fact, since that's their purpose.
This kind of iteration-as-recursion is certainly cool to think about, and as I've said I think it really helps you to think about how the language can work, which is my purpose here. Whether it leads to better code is a completely different question. Indeed there is a famous quote by Guy Steele from one of the 'lambda the ultimate ...' papers:
procedure calls may be usefully thought of as GOTO statements which also pass parameters
And that's a lovely quote, except that it cuts both ways: procedure calls, in a language which optimizes tail calls, are pretty much GOTO, and you can do almost all the horrors with them that you can do with GOTO. But GOTO is a problem, right? Well, it turns out so are procedure calls, for most of the same reasons.
So, pragmatically, even in a language (or implementation) where procedure calls do have all these nice characteristics, you end up wanting constructs which can express iteration and not recursion rather than both. So, for instance, Racket which, being a Scheme-family language, does mandate tail-call elimination, has a whole bunch of macros with names like for which do iteration.
And in Common Lisp, which does not mandate tail-call elimination but which does have GOTO, you also need to build macros to do iteration, in the spirit of my do-list above. And, of course, a bunch of people then get hopelessly carried away and the end point is a macro called loop: loop didn't exist (in its current form) in the first version of CL, and it was common at that time to simply obtain a copy of it from somewhere, and make sure it got loaded into the image. In other words, loop, with all its vast complexity, is just a macro which you can define in a CL which does not have it already.
OK, sorry, this is too long.
(loop for list in (cons '(1 2 3)
'((4 5 6) (7 8 9)))
append list)

How to check if symbol is T?

I am doing some text processing, part of it is splitting words into single characters. Every character gets interned as a symbol in upper case with some frequency value assigned to it just for the sake of easiness but as one might imagine, there is a stumbling block in form of the T constant.
The solution I am looking at now is to simply use a lowercase symbol instead of upper case T, however I am wondering if there would be a quick and easy way to verify if the symbol at hand is T.
All I can think of is:
(intern (if (string= "T" (symbol-name symbol)) #\t symbol)
but that just does not look nice since string comparison is not cumbersome. Any ideas?
PS. I need all the symbols in upper case since it is less hassle to evaluate them in listener but I can live with one lowercase t.
You should use a hash table instead of hacking the current package into an ad-hoc one. It sidesteps the T issue entirely, and is a far cleaner solution.
If concision is a concern, you can have a function like (defun frequency (char) (gethash char the-table)), which you ought to use even in the main body of code, since aside from being shorter it means your code is written in terms of "frequencies of characters" rather than in terms of "looking up values in a hash table."
If you're looking for the ultimate in keyboarding minimalism for the REPL, you can go so far as to define a reader macro such as:
(set-macro-character #\?
(lambda (stream char)
(declare (ignore char))
(let ((char (read stream)))
`(frequency (character ',char))))
t)
Which I guess you might not understand wholly, but nevertheless you can inspect the frequency of #\A with something as simple as ?A.
Anyways, the point is to write code that accomplishes its objectives simply, perspicuously, and aligned to good style and "best practises," because if you desire something special-purpose like less-typing-in-the-REPL you can always pile on another abstraction layer.
You may shadow the symbol T:
CL-USER> (shadow 't)
COMMON-LISP:T
CL-USER> (let ((t 17)) t)
17
The shadowed constant T may still be referred to as cl:t.

Lisp code explanation

I'm porting some code from lisp, but I got stuck at this part (apparently that's for mit-scheme)
(define (end-of-sentence? word)
(and (or (char-exist-last? word '#\.)
(char-exist-last? word '#\!)
(char-exist-last? word '#\?))
(not (initial? word))
(or (eq? (peek-char) '#\Space) ;;peek- so test for linefeed isn't affected
(eq? (peek-char) '#\n) ;;note- test for space isn't neccessary
(eq? (read-char) '#\t))))
;;counts the number of sentences in a given file and
;;stops at the given number
;;returns true once at that position, returns error if eof
(define (goto-sentence? file stop)
(define (c-g-iter num)
(cond ((= num stop)
#t)
((end-of-sentence?)
(c-g-iter (+ num 1)))
((not (char-ready?))
(error "EOF reached, number to large in goto-sentence?: " stop))
(else
(c-g-iter num))))
(begin
(open-path file)
(c-g-iter 1)))
Of course I could just skip that and implement what the comments say it does, but just wanted to be sure there's no magic happening in the background. So... how does this function even work -- where is it actually reading the characters? Is it as ugly as I think and does it consume the characters as a side-effect in the last check in end-of-sentence?? Or does the char-ready? actually read something?
But then again - what does (end-of-sentence?) (c-g-iter (+ num 1)) mean, as I don't expect c-g-iter to return a word.
I'm no scheme programmer, but it appears that characters are being consumed in read-char source
end-of-sentence? on the other hand appears to be getting called without a parameter, even though it is declared to take one. I assume that the functions it calls in turn are tolerant to whatever the system provides for unspecified parameters (nil?)
The pair (end-of-sentence?) (c-g-iter (+ num 1)) is a parameter to cond, which you can think like a switch or concise if/else; the first part is a test (end-of-sentence?), and the second is what to execute if true (c-g-iter (+ num 1))
Just adding my voice to the chorus; maybe I can provide some insight.
Some functions that are in these functions are not standard mit-sheme, such as char-exist-last? and initial?.(1) So I can't be sure what they do.
That being said, I think that end-of-sentence? takes in a string (word, so it should be a word) and returns true if its last character is a '!', '? or '.', and the next character after the word is a space, newline or tab character. Also, looking at intial, it probably can't be the first word in the sentence ('A.', for example, shouldn't return true, but 'A dog.' should.)
read-char does indeed 'consume characters' - "Returns the next character available from input-port, updating input-port to point to the following character." (Googled 'read-char mit scheme' to get MIT-Scheme input procedures.)
Per the same source char-ready? works like so: "Returns #t if a character is ready on input-port and returns #f otherwise."
Hope this is at least someone enlightening!
(1) MIT-Scheme Reference