Running a second search against the results of the first - sphinx

Here's the scenario:
I have an indexed database table with over a half-million records.
Search #1 is run against this table to generate the, say, 20 best matches, which are then ordered descending according to relevance.
Search #2 needs to be run against only these results. This search may, or may not, be the exact same query as Search #1. Regardless, it needs to create a second, independent, set of weights against the results of Search #1.
Any pointers or suggestions on how to go about implementing something like this?
Not asking for someone to write me a solution - tips on what methods and objects to look at would be significantly helpful.
Thanks!

You should be able to do
... WHERE id IN ({list of ids from q1})
in sphinxQL for your second query.

Related

Difference of More Like This (MLT) and normal select query in Solr

Can someone explain the exact difference of MLT and normal select query in Solr ? I know that Solr uses an advanced form of TF.IDF to score documents based on a select query for a textual field, but how does the scoring algorithm differ when MLT is being used ?
I'm not sure if the question really makes sense - More Like This is used to find more documents similar to one you already have. This is different from entering a query and wanting to get something back, they're used to solve very different modes of operation.
Behind the scenes they're both queries in the meaning of "looks up something in the index based on input", which for MLT is the terms from the existing document, instead of the query the user has entered.
You can see how the MLT query is built in MoreLikeThis.java. If I read the code correctly, a PriorityQueue is used to fetch the scores for all the terms, which are then added as boost queries to a large set of terms in a boolean query, where each term is set to SHOULD occur. That way the terms are boosted based on MLT semantics, while it uses the ClassicSimilarity behind the scenes.
But again, the use case for MLT is very different from when you'd use a regular query.

Paginating results in MongoDB without relying on .skip()

I'm building an app that calls data from MongoDB. For purposes of this question, pretend that the user searches my app for a certain query, and MongoDB has 4,000 results to spit out that match the query.
After reading around a bit, I see that it's possible to paginate using the .skip() method, but MongoDB themselves suggest against using this as it requires the curser to iterate through all the records up until the one you're skipping to, which gets more and more expensive the higher in the list you go.
I've seen a few tutorials that rely on the _id property of the results to be sequential, but this doesn't apply here - my database has tens of thousands of records, and each has a unique id, and the 4000 results that apply to the user's query are definitely not going to be sequential.
Can anyone think of a way to do this, or is skip() the only option here?
Other considerations:
The pagination will work based on the position on the page. For instance, the first query should spit out 20 records to my app. When the user scrolls to the bottom of the page, I could potentially get the _id of the 20th element on the page and pass that to my query, find it in the list of 4,000 results, find the subsequent result and start the next set of 20 from there. Is that sort of thing possible, and would it be less CPU intensive than skip()?
Your trick in "other considerations" works only if you add a sort on _id, otherwise you can't guarantee order for follow up queries. If you want to sort on a different field, you need to index that field. I would also suggest you query for 21 elements so that you don't have to go back and find the next one after the 20th element (of course, you can still show only the first 20 elements).
MongoDB ranged pagination has a good example as well.

MongoDB, sort() and pagination

I known there is already some patterns on pagination with mongo (skip() on few documents, ranged queries on many), but in my situation i need live sorting.
update:
For clarity i'll change point of question. Can i make query like this:
db.collection.find().sort({key: 1}).limit(n).sort({key: -1}).limit(1)
The main point, is to sort query in "usual" order, limit the returned set of data and then reverse this with sorting to get the last index of paginated data. I tried this approach, but it seems that mongo somehow optimise query and ignores first sort() operator.
I am having a huge problem attempting to grasp your question.
From what I can tell when a user refreshes the page, say 6 hours later, it should show not only the results that were there but also the results that are there now.
As #JohnnyHK says MongoDB does "live" sorting naturally whereby this would be the case and MongoDB, for your queries would give you back the right results.
Now I think one problem you might trying to get at here (the question needs clarification, massively) is that due to the data change the last _id you saw might no longer truely represent the page numbers etc or even the diversity of the information, i.e. the last _id you saw is now in fact half way through page 13.
These sorts of things you would probably spend more time and performance trying to solve than just letting the user understand that they have been AFAK for a long time.
Edit
Aha, I think I see what your trying to do now, your trying to be sneaky by getting both the page and the last item in the list at the same time. Unfortunately just like SQL this is not possible. Even if sort worked like that the sort would not function like it should since you can only sort one way on a single field.
However for future reference the sort() function is exactly that on a cursor and until you actually open the cursor by starting to iterate it calling sort() multiple times will just overwrite the cursor property.
I am afraid that this has to be done with two queries, so you get your page first and then client side (I think your looking for the max of that page) scroll through the records to find the last _id or just do a second query to get the last _id. It should be super dupa fast.

How to store query output in temp db?

I am really new to the programming but I am studying it. I have one problem which I don't know how to solve.
I have collection of docs in mongoDB and I'm using Elasticsearch to query the fields. The problem is I want to store the output of search back in mongoDB but in different DB. I know that I have to create temporary DB which has to be updated with every search result. But how to do this? Or give me documentation to read so I could learn it. I will really appreciate your help!
Mongo does not natively support "temp" collections.
A typical thing to do here is to not actually write the entire results output to another DB since that would be utterly pointless since Elasticsearch does its own caching as such you don't need any layer over the top.
As well, due to IO concerns it is normally a bad idea to write say a result set of 10k records to Mongo or another DB.
There is a feature request for what you talk of: https://jira.mongodb.org/browse/SERVER-3215 but no planning as of yet.
Example
You could have a table of results.
Within this table you would have a doc that looks like:
{keywords: ['bok', 'mongodb']}
Each time you search and scroll through each result item you would write a row to this table populating the keywords field with keywords from that search result. This would be per search result per search result list per search. It would probably be best to just stream each search result to MongoDB as they come in. I have never programmed Python (though I wish to learn) so an example in pseudo:
var elastic_results = [{'elasticresult'}];
foreach(elastic_results as result){
//split down the phrases in this result and make a keywords array
db.results_collection.insert(array_formed_from_splitting_down_result); // Lets just lazy insert no need for batch or trying to shrink the amount of data to one go or whatever, lets just stream it in.
}
So as you go along your results you basically just mass insert as fast a possible create a sort of "stream" of input to MongoDB. It can do this quite well.
This should then give you a shardable list of words and language verbs to process things like MRs on and stuff to aggregate statistics about them.
Without knowing more and more about your scenario this is pretty much my best answer.
This does not use the temp table concept but instead makes your data permanent which is fine by the sounds of it since you wish to use Mongo as a storage engine for further tasks.
Actually there is MongoDB river plugin to work with Elasticsearch...
db.your_table.find().forEach(function(doc) { b.another_table.insert(doc); } );

Query for set complement in CouchDB

I'm not sure that there is a good way to do with with the facilities CouchDB provides, but I'd like to somehow extract the relative complement of the sets of two different document types over a particular key.
For example, let's say that I have documents representing users and posts, both of which have a (unique) username field. There's a validation in place ensuring that a user document exists for the username in every post, but there may be any number post documents with a given username, include none. It's trivial to create a view which counts the number of posts per username. The view can even include zero-counts by emitting zero post-counts for the user documents in the view map function. What I want to do though is retrieve just the list of users who have zero associated posts.
It's possible to build the view I described above and filter client-side for zero-value results, but in my actual situation the number of results could be very, very large, and the interesting results a relatively small proportion of the total. Is there a way to do this sever-side and retrieve back just the interesting results?
I would write a map function to iterate through the documents and emit the users (or just usersnames) with 0 posts.
Then I would write a list function to iterate through the map function results and format them however you want (JSON, csv, etc).
(I would NOT use a reduce function to format the results, even if a reduce function appears to work OK in development. That is just my own experience from lessons learned the hard way.)
Personally I would filter on the client-side until I had performance issues. Next I would probably use Teddy's _filter technique—all pretty standard CouchDB stuff.
However, I stumbled across (IMO) an elegant way to find set complements. I described it when exploring how to find documents missing a field.
The basic idea
Finding non-members of your view obviously can't be done with a simple query (and a straightforward index scan.) However, it can be done in constant memory, and linear time, by simultaneously iterating through two query results at the same time.
One query is for all possible document ids. The other query is for matching documents (those you don't want). Importantly, CouchDB sorts query results, therefore you can calculate the complement efficiently.
See my details in the previous question. The basic idea is you iterate through both (sorted) lists simultaneously and when you say "hey, this document id is listed in the full set but it's missing in the sub-set, that is a hit.
(You don't have to query _all_docs, you just need two queries to CouchDB: one returning all possible values, and the other returning values not to be counted.)