Why REPL gives warning on using structural types? Are structural types unsafe to use?
scala> def test(st: { def close():Unit})
| = st.close()
<console>:12: warning: reflective access of structural type member method close should be enabled
by making the implicit value scala.language.reflectiveCalls visible.
This can be achieved by adding the import clause 'import scala.language.reflectiveCalls'
or by setting the compiler option -language:reflectiveCalls.
See the Scaladoc for value scala.language.reflectiveCalls for a discussion
why the feature should be explicitly enabled.
= st.close()
^
test: (st: AnyRef{def close(): Unit})Unit
The warning suggests viewing the Scaladoc page, which says
Why control it? Reflection is not available on all platforms. Popular
tools such as ProGuard have problems dealing with it. Even where
reflection is available, reflective dispatch can lead to surprising
performance degradations.
Source
To make the warning go away, simply add import scala.language.reflectiveCalls to the top of your file to indicate that, yes, you do in fact intend to use this language feature.
I would like to put another point of view than Silvio Mayolo's answer.
Fundamentally the important thing here is that Scala is compiled into a JVM rather than some Scala-specific target platform. This means that many features that exist in Scala are not supported out of the box by the target platform (JVM) and they have to be somehow simulated by the compiler. One of such features is structural types and it is implemented using reflection. And using reflection introduces a bunch of potential issues that are mentioned in Silvio's answer. Thus compiler developers want to make sure that you understand possible drawbacks and still want to use this feature by enforcing either explicit import, compiler configuration or warning.
As for alternatives in your case you may use java.lang.AutoCloseable instead of your structural type and it will probably cover most of your cases.
Another alternative is to use implicit parameter and type class idea:
trait CloseableTC[A] {
def close(closeable: A): Unit
}
object CloseableTC {
implicit val javaCloseable: CloseableTC[java.lang.AutoCloseable] = new CloseableTC[java.lang.AutoCloseable] {
override def close(closeable: AutoCloseable): Unit = closeable.close()
}
// add here more implicits for other classes with .close()
}
def testTC[A](a: A)(implicit closeableTC: CloseableTC[A]) = closeableTC.close(a)
import CloseableTC._
I've made use of a few of scala's built-in type classes, and created a few of my own. However, the biggest issue I have with them at the moment is: how do I find type classes available to me? While most of those that I write are small and simple, it would be nice to know if something already exists that does what I'm about to implement!
So, is there a list, somewhere, of all the type classes or implicit values available in the standard library?
Even better, is it possible to somehow (probably within the REPL) generate a list of the implicit values available in the current scope?
It's a job for a good IDE.
IntellijIDEA 14+
Check out Implicits analyser in Scala Plugin 1.4.x. Example usage:
def myMethod(implicit a: Int) = {
}
implicit val a: Int = 1
myMethod // click the myMethod and press Ctrl+Shift+P, the "Implicit Parameters" is shown
Eclipse
Check out Implicit highlighting.
Scala REPL
You can list implicits like this:
:implicits -v
And investigate their origin like defined here:
import reflect.runtime.universe
val tree = universe.reify(1 to 4).tree
universe.showRaw(tree)
universe.show(tree)
Scala seems to behave like Java when it comes to the magic conversion of primitives:
val a: Int = 1
val b: Double = 2.3
println(a + b) // 3.3
println(Math.max(a, b)) // 2.3
More often than not, this has been a source of bugs in my code. Is there a way to disable these implicit conversions so that my example give a compilation warnning/error? I would really rather have to write
print(a.toDouble + b)
println(Math.max(a.toDouble, b))
every single time I need such conversions.
Use WartRemover. A wart like that isn't built-in, but could be written (see "Writing Wart Rules" in README). Though now that I think, it's probably more work than I thought initially.
scalac also has -Ywarn-numeric-widen option (together with -Xfatal-warnings to turn the warnings to errors), but I don't know if there are any cases not covered by it.
I've been working with Scala for a while now and have written a 10,000+ line program with it, but I'm still confused by some of the inner workings. I came to Scala from Python after already having intimate familiarity with Java, C and Lisp, but even so it's been slow going, and a huge problem is the frustrating difficulty I've often found when trying to investigate the inner workings of objects/types/classes/etc. using the Scala REPL as compared with Python. In Python you can investigate any object foo (type, object in a global variable, built-in function, etc.) using foo to see what the thing evaluates to, type(foo) to show its type, dir(foo) to tell you the methods you can call on it, and help(foo) to get the built-in documentation. You can even do things like help("re") to find out the documentation on the package named re (which holds regular-expression objects and methods), even though there isn't an object associated with it.
In Scala, you can try and read the documentation online, go look up the source code to the library, etc., but this can often be very difficult for things where you don't know where or even what they are (and it's often a big chunk to bite off, given the voluminous type hierarchy) -- stuff is floating around in various places (package scala, Predef, various implicit conversions, symbols like :: that are nearly impossible to Google). The REPL should be the way to explore directly, but in reality, things are far more mysterious. Say that I've seen a reference to foo somewhere, but I have no idea what it is. There's apparently no such thing as a "guide to systematically investigating Scala thingies with the REPL", but the following is what I've pieced together after a great deal of trial and error:
If foo is a value (which presumably includes things stored in variables plus companion objects and other Scala objects), you can evaluate foo directly. This ought to tell you the type and value of the result. Sometimes the result is helpful, sometimes not.
If foo is a value, you can use :type foo to get its type. (Not necessarily enlightening.) If you use this on a function call, you get the type of the return value, without calling the function.
If foo is a value, you can use foo.getClass to get its class. (Often more enlightening than the previous, but how does an object's class differ from its type?)
For a class foo, you can use classOf[foo], although it's not obvious what the result means.
Theoretically, you can use :javap foo to disassemble a class -- which should be the most useful of all, but fails entirely and uniformly for me.
Sometimes you have to piece things together from error messages.
Example of failure using :javap:
scala> :javap List
Failed: Could not find class bytes for 'List'
Example of enlightening error message:
scala> assert
<console>:8: error: ambiguous reference to overloaded definition,
both method assert in object Predef of type (assertion: Boolean, message: => Any)Unit
and method assert in object Predef of type (assertion: Boolean)Unit
match expected type ?
assert
^
OK, now let's try a simple example.
scala> 5
res63: Int = 5
scala> :type 5
Int
scala> 5.getClass
res64: java.lang.Class[Int] = int
Simple enough ...
Now, let's try some real cases, where it's not so obvious:
scala> Predef
res65: type = scala.Predef$#3cd41115
scala> :type Predef
type
scala> Predef.getClass
res66: java.lang.Class[_ <: object Predef] = class scala.Predef$
What does this mean? Why is the type of Predef simply type, whereas the class is scala.Predef$? I gather that the $ is the way that companion objects are shoehorned into Java ... but Scala docs on Google tell me that Predef is object Predef extends LowPriorityImplicits -- how can I deduce this from the REPL? And how can I look into what's in it?
OK, let's try another confusing thing:
scala> `::`
res77: collection.immutable.::.type = ::
scala> :type `::`
collection.immutable.::.type
scala> `::`.getClass
res79: java.lang.Class[_ <: object scala.collection.immutable.::] = class scala.collection.immutable.$colon$colon$
scala> classOf[`::`]
<console>:8: error: type :: takes type parameters
classOf[`::`]
^
scala> classOf[`::`[Int]]
res81: java.lang.Class[::[Int]] = class scala.collection.immutable.$colon$colon
OK, this left me hopelessly confused, and eventually I had to go read the source code to make sense of this all.
So, my questions are:
What's the recommended best way from the true Scala experts of using the REPL to make sense of Scala objects, classes, methods, etc., or at least investigate them as best as can be done from the REPL?
How do I get :javap working from the REPL for built-in stuff? (Shouldn't it work by default?)
Thanks for any enlightenment.
You mentioned an important point which Scala lacks a bit: the documentation.
The REPL is a fantastic tool, but it is not as fantastic at it can be. There are too much missing features and features which can be improved - some of them are mentioned in your post. Scaladoc is a nice tool, too, but is far away to be perfect. Furthermore lots of code in the API is not yet or too less documented and code examples are often missing. The IDEs are full ob bugs and compared to the possibilities Java IDEs show us they look like some kindergarten toys.
Nevertheless there is a gigantic difference of Scalas current tools compared to the tools available as I started to learn Scala 2-3 years ago. At that time IDEs compiled permanently some trash in the background, the compiler crashed every few minutes and some documentation was absolutely nonexistent. Frequently I got rage attacks and wished death and corruption to Scala authors.
And now? I do not have any of these rage attacks any more. Because the tools we currently have are great although the are not perfect!
There is docs.scala-lang.org, which summarizes a lot of great documentation. There are Tutorials, Cheat-sheets, Glossaries, Guides and a lot of more great stuff. Another great tools is Scalex, which can find even the weirdest operator one can think of. It is Scalas Hoogle and even though it is not yet as good as his great ideal, it is very useful.
Great improvements are coming with Scala2.10 in form of Scalas own Reflection library:
// needs Scala2.10M4
scala> import scala.reflect.runtime.{universe => u}
import scala.reflect.runtime.{universe=>u}
scala> val t = u.typeOf[List[_]]
t: reflect.runtime.universe.Type = List[Any]
scala> t.declarations
res10: Iterable[reflect.runtime.universe.Symbol] = SynchronizedOps(constructor List, method companion, method isEmpty, method head, method tail, method ::, method :::, method reverse_:::, method mapConserve, method ++, method +:, method toList, method take, method drop, method slice, method takeRight, method splitAt, method takeWhile, method dropWhile, method span, method reverse, method stringPrefix, method toStream, method removeDuplicates)
Documentation for the new Reflection library is still missing, but in progress. It allows one to use scalac in an easy way inside of the REPL:
scala> u reify { List(1,2,3) map (_+1) }
res14: reflect.runtime.universe.Expr[List[Int]] = Expr[List[Int]](immutable.this.List.apply(1, 2, 3).map(((x$1) => x$1.$plus(1)))(immutable.this.List.canBuildFrom))
scala> import scala.tools.reflect.ToolBox
import scala.tools.reflect.ToolBox
scala> import scala.reflect.runtime.{currentMirror => m}
import scala.reflect.runtime.{currentMirror=>m}
scala> val tb = m.mkToolBox()
tb: scala.tools.reflect.ToolBox[reflect.runtime.universe.type] = scala.tools.reflect.ToolBoxFactory$ToolBoxImpl#32f7fa37
scala> tb.parseExpr("List(1,2,3) map (_+1)")
res16: tb.u.Tree = List(1, 2, 3).map(((x$1) => x$1.$plus(1)))
scala> tb.runExpr(res16)
res18: Any = List(2, 3, 4)
This is even greater when we want to know how Scala code is translated internally. Formerly wen need to type scala -Xprint:typer -e "List(1,2,3) map (_+1)"
to get the internally representation. Furthermore some small improvements found there way to the new release, for example:
scala> :type Predef
scala.Predef.type
Scaladoc will gain some type-hierarchy graph (click on type-hierarchy).
With Macros it is possible now, to improve error messages in a great way. There is a library called expecty, which does this:
// copied from GitHub page
import org.expecty.Expecty
case class Person(name: String = "Fred", age: Int = 42) {
def say(words: String*) = words.mkString(" ")
}
val person = Person()
val expect = new Expecty()
// Passing expectations
expect {
person.name == "Fred"
person.age * 2 == 84
person.say("Hi", "from", "Expecty!") == "Hi from Expecty!"
}
// Failing expectation
val word1 = "ping"
val word2 = "pong"
expect {
person.say(word1, word2) == "pong pong"
}
/*
Output:
java.lang.AssertionError:
person.say(word1, word2) == "pong pong"
| | | | |
| | ping pong false
| ping pong
Person(Fred,42)
*/
There is a tool which allows one to find libraries hosted on GitHub, called ls.implicit.ly.
The IDEs now have some semantic highlighting, to show if a member is a object/type/method/whatever. The semantic highlighting feature of ScalaIDE.
The javap feature of the REPL is only a call to the native javap, therefore it is not a very featue-rich tool. You have to fully qualify the name of a module:
scala> :javap scala.collection.immutable.List
Compiled from "List.scala"
public abstract class scala.collection.immutable.List extends scala.collection.AbstractSeq implements scala.collection.immutable.LinearSeq,scala.Product,scala.collection.LinearSeqOptimized{
...
Some time ago I have written a summary of how Scala code is compiled to Bytecode, which offers a lot of things to know.
And the best: This is all done in the last few months!
So, how to use all of these things inside of the REPL? Well, it is not possible ... not yet. ;)
But I can tell you that one day we will have such a REPL. A REPL which shows us documentation if we want to see it. A REPL which let us communicate with it (maybe like lambdabot). A REPL which let us do cool things we still cannot imagine. I don't know when this will be the case, but I know that a lot of stuff was done in the last years and I know even greater stuff will be done in the next years.
Javap works, but you are pointing it to scala.Predef.List, which is a type, not a class. Point it instead to scala.collection.immutable.List.
Now, for the most part just entering a value and seeing what the result's type is is enough. Using :type can be helpful sometimes. I find that use getClass is a really bad way of going about it, though.
Also, you are sometimes mixing types and values. For example, here you refer to the object :::
scala> `::`.getClass res79: java.lang.Class[_ <: object
scala.collection.immutable.::] = class
scala.collection.immutable.$colon$colon$
And here you refer to the class :::
scala> classOf[`::`[Int]] res81: java.lang.Class[::[Int]] = class
scala.collection.immutable.$colon$colon
Objects and classes are not the same thing, and, in fact, there's a common pattern of objects and classes by the same name, with a specific name for their relationship: companions.
Instead of dir, just use tab completion:
scala> "abc".
+ asInstanceOf charAt codePointAt codePointBefore codePointCount
compareTo compareToIgnoreCase concat contains contentEquals endsWith
equalsIgnoreCase getBytes getChars indexOf intern isEmpty
isInstanceOf lastIndexOf length matches offsetByCodePoints regionMatches
replace replaceAll replaceFirst split startsWith subSequence
substring toCharArray toLowerCase toString toUpperCase trim
scala> "abc".compareTo
compareTo compareToIgnoreCase
scala> "abc".compareTo
def compareTo(String): Int
If you enter the power mode, you'll get way more information, but that's hardly for beginners. The above shows types, methods, and method signatures. Javap will decompile stuff, though that requires you to have a good handle on bytecode.
There's other stuff in there -- be sure to look up :help, and see what's available.
Docs are only available through the scaladoc API. Keep it open on the browser, and use its search capability to quickly find classes and methods. Also, note that, as opposed to Java, you don't need to navigate through the inheritance list to get the description of the method.
And they do search perfectly fine for symbols. I suspect you haven't spent much time on scaladoc because other doc tools out there just aren't up to it. Javadoc comes to mind -- it's awful browsing through packages and classes.
If you have specific questions Stack Overflow style, use Symbol Hound to search with symbols.
Use the nightly Scaladocs: they'll diverge from whatever version you are using, but they'll always be the most complete. Besides, right now they are far better in many respects: you can use TAB to alternate between frames, with auto-focus on the search boxes, you can use arrows to navigate on the left frame after filtering, and ENTER to have the selected element appear on the right frame. They have the list of implicit methods, and have class diagrams.
I've made do with a far less powerful REPL, and a far poorer Scaladoc -- they do work, together. Granted, I skipped to trunk (now HEAD) just to get my hands on tab-completion.
Note that scala 2.11.8 New tab-completion in the Scala REPL can facilitate the type exploration/discovery.
It now includes:
CamelCase completion:
try:
(l: List[Int]).rroTAB,
it expands to:
(l: List[Int]).reduceRightOption
Find members by typing any CamelCased part of the name:
try:
classOf[String].typTAB,
to get getAnnotationsByType, getComponentType and others
Complete bean getters without typing get:
try:
(d: java.util.Date).dayTAB
Press TAB twice to see the method signature:
try:
List(1,2,3).partTAB,
which completes to:
List(1,2,3).partition;
press TAB again to display:
def partition(p: Int => Boolean): (List[Int], List[Int])
You need to pass fully qualified class name to javap.
First take it using classOf:
scala> classOf[List[_]]
res2: java.lang.Class[List[_]] = class scala.collection.immutable.List
Then use javap (doesn't work from repl for me: ":javap unavailable on this platform.") so example is from a command line, in repl, I believe, you don't need to specify classpath:
d:\bin\scala\scala-2.9.1-1\lib>javap -classpath scala-library.jar "scala.collection.immutable.List"
But I doubt this will help you. Probably you're trying to use techniques you used to use in dynamic languages. I extremely rarely use repl in scala (while use it often in javascript). An IDE and sources are my all.
According to "Programming in Scala" one can pass the argument -Xprint:typer to the compiler and gets the code back as it looks after all the implicites are actually applied.
I also found that I can set compiler arguments in the project properties.
But I can't find any resulting output anywhere ...
So where do I have to look?
If you start Eclipse from a console, you should see the printed output there.
With the Scala IDE 2.1 Milestone 1 you can press Ctrl-1 to make implicits explicit
From http://scala-ide.org/download/milestone.html#scala_ide_21_milestone_1
Highlight Implicits It has never been easier to know where implicits
are applied. And, by pressing Cmd/Ctrl+1, turn an implicit conversion
into an explicit call!