First message not arriving over an MSMQ/MassTransit Service Bus - msmq

I've got a MassTransit ServiceBus running over MSMQ. It appears that the first message sent over the Bus doesn't arrive, but subsequent messages do?
Is there some initialization that needs performing on the queue or bus before the message is sent?

This depends on a few settings in how much time the system needs to setup before everything will correctly route. If only first message is failing to end up in the right location, then likely the subscription data isn't propagated everywhere yet. http://readthedocs.org/docs/masstransit/en/develop/overview/subscriptions.html
Using Multicast subscriptions, the easiest choice, will require a few seconds after a endpoint has come up and register a subscriber with all other endpoints. If you can control the order of services starting up, then this can often be avoided by started back to front in the flow.
If you are using the subscription service, then that can also take a couple seconds to get data everywhere. It has to go through the subscription service but the subscription is send to everyone on the bus. This is tied to a SQL db, and latency to the db can effect this timing.
Lastly, if you are using static routing, then that should work immediately, because the subscription is setup upon startup.

Related

Wrap event based system with REST API

I'm designing a system that uses a microservices architecture with event-based communication (using Google Cloud Pub/Sub).
Each of the services is listening and publishing messages so between the services everything is excellent.
On top of that, I want to provide a REST API that users can use without breaking the event-based approach. However, if I have an endpoint that triggers event X, how will I send the response to the user? Does it make sense to create a subscriber for a "ProcessXComplete" event and than return 200 OK?
For example:
I have the following microservices:
Service A
Service B
Frontend Service - REST Endpoints
I'm want to send this request "POST /posts" - this request sent to the frontend service.
The frontend service should trigger "NewPostEvent."
Both Service A and Service B will listen to this event and do something.
So far, so good, but here is where things are starting to get messy for me.
Now I want to return the user that made the request a valid response that the operation completed.
How can I know that all services finished their tasks, and how to create the handler to return this response?
Does it even make sense to go this way or is there a better design to implement both event-based communications between services and providing a REST API
What you're describing is absolutely one of the challenges of event-based programming and how eventual-consistency (and lack of atomicity) coordinates with essentially synchronous UI/UX.
It generally does make sense to have an EventXComplete event. Our microservices publish events on completion of anything that could potentially fail. So, there are lots of ServiceA.EventXSuccess events flowing through the queues. I'm not familiar with Google Cloud PubSub specifically, but in general in Messaging systems there is little extra cost to publishing messages with few (or no) subscribers to require compute power. So, we tend to over-articulate service status by default; it's easy to come back later and tone down messaging as needed. In fact, some of our newer services have Messaging Verbosity configurable via an Admin API.
The Frontend Service (which here is probably considered a Gateway Service or Facade Layer) has taken on the responsibility of being a responsive backing for your UI, so it needs to, in fact, BE responsive. In this example, I'd expect it to persist the User's POST request, return a 200 response and then update its local copy of the request based on events it's subscribed to from ServiceA and ServiceB. It also needs to provide a mechanism (events, email, webhook, gRPC, etc.) to communicate from the Frontend Service back to any UI if failure happens (maybe even if success happens). Which communication you use depends on how important and time-sensitive the notification is. A good example of this is getting an email from Amazon saying billing has failed on an Order you placed. They let you know via email within a few minutes, but they don't make you wait for the ExecuteOrderBilling message to get processed in the UI.
Connecting Microservices to the UI has been one of the most challenging aspects of our particular journey; avoiding tight coupling of models/data structures, UI workflows that are independent of microservice process flows, and perhaps the toughest one for us: authorization. These are the hidden dark-sides of this distributed architecture pattern, but they too can be overcome. Some experimentation with your particular system is likely required.
It really depends on your business case. If the REST svc is dropping message in message queue , then after dropping the message we simply return the reference ID that client can poll to check the progress.
E.g. flight search where your system has to calls 100s of backend services to show you flight deals . Search api will drop the message in the queue and save the same in the database with some reference ID and you return same id to client. Once worker are done with the message they will update the reference in DB with results and meanwhile your client will be polling (or web sockets preferably) to update the UI with results.
The idea is you can't block the request and keep everything async , this will make system scaleable.

Event Replay using TrackingEventProcessor - Axon 3

I'm following the axon-springboot example shared by Allard (https://github.com/abuijze/bootiful-axon).
My understanding so far is: (please correct me if I have misunderstood some of the concepts)
Events are raised and stored in the event store/event bus (Mysql) (using EmbeddedEventStore). Now, event processors (TrackingProcessors - in my case) will pull events from the source (MySql - right?) and event handlers will execute the business logic and update the query storage and message published to RabbitMQ.
First question is where, when and who publishes this message to the RabbitMQ (used by statistics application which has the message listener configured.)
I have configured the TrackingProcessor to try the replay functionality. To execute the replay I stop my processor, delete the token entry for the processor, start the processor and events are replayed and my Query Storage is up-to-date as expected.
Second question is, when the replay is triggered and Query Storage is updated, I don't see any messages being published to the RabbitMQ...so my statistics application is out of sync. Am I doing something wrong?
Can you please advise?
Thanks
Singh
First of all, a correction: it is not the Tracking Processor or the updater of the view model that sends the messages to RabbitMQ. The Events are forwarded to Rabbit as they are published to the Event Bus.
The answer to your first question: messages are published by the SpringAmqpPublisher, which connects directly to the Event Bus, and forwards any published message to RabbitMQ as they are published.
To answer your second question, let's clarify how replays work, first. While it's called a "replay", essentially it's more a "reset". The Tracking Processor uses a TrackingToken to remember its progress of processing the Event Store. When the token is deleted (or just not yet available), the Tracking Processor starts processing from the beginning of the Event Store.
You never reply an entire application, just a single (Tracking) Processor. Just imagine: you re-publish all messages to RabbitMQ again, other components are triggered again, unaware of the fact that these are "old" messages, and user-confirmation emails are sent again, orders placed again, etc. etc.
If your Statistics are out of date, it's because they aren't part of the same processor and aren't rebuilt together with the other element. RabbitMQ doesn't support "replaying", since it doesn't remember the messages after delivering them.
Any model that you want to be able to rebuild, should be managed by a Tracking Processor.
Check out the Axon Reference guide for more information: https://docs.axonframework.org/part3/event-processing.html#event-processors

Asynchronous task queues in Google container engine

I'm trying to figure out a portable way to develop a custom but scalable task queue in my cluster for google container engine . This is the scenario I have a front end that captures users details in my node js instance ,these details are sent to the api system which in turn contacts the db ,saves the user details and is expected to send a welcome mail .
My issue is this i don't want to use the same api endpoint method to process the sending mail requests ,I need another process to handle that how do I handle that with my kubernetes infrastructure?.Do I need to implement a pub sub type of system to publish to another container ?.If I do this it means all subscribes will be notified of my update but what if I have 2 instances of my sub system running it means they will all observe the changes and send the mail twice. Any thoughts or ideas on this would be appreciated.
I see two reasonable ways to approach this.
1: have a service that takes in mailing events by means of an API and returns immediately after receiving to process mailing asynchornously. Using kube service you will hit only one such service and one mail will be sent in a non blocking way for the calling service, but it has downsides - ie. what happens if something fails, the mail might not be generated at all.
2: I would go for some MQ probably (Kafka, Rabbit etc.), have a message queue consumed by any number of mailing service instances, make sure that only one can pick up the message, and require an ack for the message or return it to processing if no ack in N min

Is a message queue like RabbitMQ the ideal solution for this application?

I have been working on a project that is basically an e-commerce. It's a multi tenant application in which every client has its own domain and the website adjusts itself based on the clients' configuration.
If the client already has a software that manages his inventory like an ERP, I would need a medium on which, when the e-commerce generates an order, external applications like the ERP can be notified that this has happened to take actions in response. It would be like raising events over different applications.
I thought about storing these events in a database and having the client make requests in a short interval to fetch the data, but something about polling and using a REST Api for this seems hackish.
Then I thought about using Websockets, but if the client is offline for some reason when the event is generated, the delivery cannot be assured.
Then I encountered Message Queues, RabbitMQ to be specific. With a message queue, modeling the problem in a simplistic manner, the e-commerce would produce events on one end and push them to a queue that a clients worker would be processing as events arrive.
I don't know what is the best approach, to be honest, and would love some of you experienced developers give me a hand with this.
I do agree with Steve, using a message queue in your situation is ideal. Message queueing allows web servers to respond to requests quickly, instead of being forced to perform resource-heavy procedures on the spot. You can put your events to the queue and let the consumer/worker handle the request when the consumer has time to handle the request.
I recommend CloudAMQP for RabbitMQ, it's easy to try out and you can get started quickly. CloudAMQP is a hosted RabbitMQ service in the cloud. I also recommend this RabbitMQ guide: https://www.cloudamqp.com/blog/2015-05-18-part1-rabbitmq-for-beginners-what-is-rabbitmq.html
Your idea of using a message queue is a good one, better than database or websockets for the reasons you describe. With the message queue (RabbitMQ, or another server/broker based system such as Apache Qpid) approach you should consider putting a broker in a "DMZ" sort of network location so that your internal ecommerce system can push events out to it, and your external clients can reach into without risking direct access to your core business systems. You could also run a separate broker per client.

What is Microsoft Message Queuing (MSMQ)? How does it work?

I need to work with MSMQ (Microsoft Message Queuing). What is it, what is it for, how does it work? How is it different from web services?
With all due respect to #Juan's answer, both are ways of exchanging data between two disconnected processes, i.e. interprocess communication channels (IPC). Message queues are asynchronous, while webservices are synchronous. They use different protocols and back-end services to do this so they are completely different in implementation, but similar in purpose.
You would want to use message queues when there is a possibility that the other communicating process may not be available, yet you still want to have the message sent at the time of the client's choosing. Delivery will occur the when process on the other end wakes up and receives notification of the message's arrival.
As its name states, it's just a queue manager.
You can Send objects (serialized) to the queue where they will stay until you Receive them.
It's normally used to send messages or objects between applications in a decoupled way
It has nothing to do with webservices, they are two different things
Info on MSMQ:
https://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx
Info on WebServices:
http://msdn.microsoft.com/en-us/library/ms972326.aspx
Transactional Queue Management 101
A transactional queue is a middleware system that asynchronously routes messages of one sort of another between hosts that may or may not be connected at any given time. This means that it must also be capable of persisting the message somewhere. Examples of such systems are MSMQ and IBM MQ
A Transactional Queue can also participate in a distributed transaction, and a rollback can trigger the disposal of messages. This means that a message is guaranteed to be delivered with at-most-once semantics or guaranteed delivery if not rolled back. The message won't be delivered if:
Host A posts the message but Host B
is not connected
Something (possibly but not
necessarily initiated from Host A)
rolls back the transaction
B connects after the transaction is
rolled back
In this case B will never be aware the message even existed unless informed through some other medium. If the transaction was rolled back, this probably doesn't matter. If B connects and collects the message before the transaction is rolled back, the rollback will also reverse the effects of the message on B.
Note that A can post the message to the queue with the guarantee of at-most-once delivery. If the transaction is committed Host A can assume that the message has been delivered by the reliable transport medium. If the transaction is rolled back, Host A can assume that any effects of the message have been reversed.
Web Services
A web service is remote procedure call or other service (e.g. RESTFul API's) published by a (typically) HTTP Server. It is a synchronous request/response protocol and has no guarantee of delivery built into the protocol. It is up to the client to validate that the service has been correctly run. Typically this will be through a reply to the request or timeout of the call.
In the latter case, web services do not guarantee at-most-once semantics. The server can complete the service and fail to deliver a response (possibly through something outside the server going wrong). The application must be able to deal with this situation.
IIRC, RESTFul services should be idempotent (the same state is achieved after any number of invocations of the same service), which is a strategy for dealing with this lack of guaranteed notification of success/failure in web service architectures. The idea is that conceptually one writes state rather than invoking a service, so one can write any number of times. This means that a lack of feedback about success can be tolerated by the application as it can re-try the posting until it gets a 'success' message from the server.
Note that you can use Windows Communication Foundation (WCF) as an abstraction layer above MSMQ. This gives you the feel of working with a service - with only one-way operations.
For more information, see:
http://msdn.microsoft.com/en-us/library/ms789048.aspx
Actually there is no relation between MSMQ and WebService.
Using MSMQ for interprocess communication (you can use also sockets, windows messaging, mapped memory).
it is a windows service that responsible for keeping messages till someone dequeue them.
you can say it is more reliable than sockets as messages are stored on a harddisk but it is slower than other IPC techniques.
You can use MSMQ in dotnet with small lines of code, Just Declare your MessageQueue object and call Receive and Send methods.
The Message itself can be normal string or binary data.
As everyone has explained MSMQ is used as a queue for messages. Messages can be wrapper for actual data, object and anything that you can serialize and send across the wire. MSMQ has it's own limitations. MSMQ 1.0 and MSMQ 2.0 had a 4MB message limit. This restriction was lifted off with MSMQ 3.0. Message oriented Middleware (MOM) is a concept that heavily depends on Messaging. Enterprise Service Bus foundation is built on Messaging. All these new technologies, depend on Messaging for asynchronous data delivery with reliability.
MSMQ stands for Microsoft Messaging Queue.
It is simply a queue that stores messages formatted so that it can pass to DB (may on same machine or on Server). There are different types of queues over there which categorizes the messages among themselves.
If there is some problem/error inside message or invalid message is passed, it automatically goes to Dead queue which denotes that it is not to be processed further. But before passing a message to dead queue it will retry until a max count and till it is not processed. Then it will be sent to the Dead queue.
It is generally used for sending log message from client machine to server or DB so that if there is any issue happens on client machine then developer or support team can go through log to solve problem.
MSMQ is also a service provided by Microsoft to Get records of Log files.
You get Better Idea from this blog http://msdn.microsoft.com/en-us/library/ms711472(v=vs.85).aspx.