How do we reduce Context Switch time - operating-system

All we know that context switch time is pure overhead and is of no use.But i would like to know how can one reduced context switch time .Is using more register help us doing in so?

Are you writing an operating system? The context switch time is dependent on the registers you have to save / restore. One way you can possibly save time is via the AVX extensions on new processors, which allow you to save/restore all of the registers to one block of memory.

Minimize the context size and/or avoid context switches. How exactly yo do that depends on the context (not the context that you're switching but the context of the problem, the CPU, the OS, etc).
On the x86 CPU you can avoid unnecessary saving and restoring of the state of the floating point unit if it doesn't change. This is done by setting the task switched bit in CR0 to 1 during a context switch and then waiting for a special CPU exception originating from the first FPU instruction of the new thread. When it occurs, you save the old thread's FPU state, load the current thread's FPU state, reset CR0.TS and resume execution at that FPU instruction. If threads come and go but the exception doesn't occur, that means the threads aren't doing FPU work and you don't do full context switches.

It would be up to the programmer to implement a threading policy, synchronization mechanisms, and data structures that minimize lock contention. When a thread tries to acquire a lock that is already acquired by another thread, it has little choice but to poll several times, hoping they will release it within a very short time, then give up and do a context switch.
If this question was from the perspective of a linux administrator, you can reduce time spent in context switches by increasing the minimum timeslice (see sched_latency_ns and sched_min_granularity_ns), or by ensuring that the demand for processors is less than or equal to the number of available processors. Context switch rate is significantly lower when you have spare processors - it won't need to "switch" any existing processors, it can use an idle one.

Related

Throughput vs latency in computer architecture

I've come across articles on "through-put vs latency" in contexts like networking e.g. https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch12s04.html But in the context of computer architecture / operating systems, I'm not able to understand why would there be a trade-off between latency (response time of a program) and through-put (how many programs we're able to complete in a unit of time, say per hour). Is this solely due to the fact that we can choose to parallelize processing of multiple programs / requests leading to overheads like context switches & sharing of caches which make the start-to-end response time per process to be worse? Or am I missing something here?
In terms of single instructions in a superscalar pipelined out-of-order exec CPU, throughput vs. latency is very important because the CPU is trying to extract parallelism from an instruction stream that has to be executed as if in serial program order. See Assembly - How to score a CPU instruction by latency and throughput and the bottom of my answer on latency vs throughput in intel intrinsics for example.
In terms of OS decisions that affect throughput vs. latency on a much longer timescale than a few clock cycles, that's a totally separate question.
One of the major factors there is choosing how to use the available physical RAM, and whether to page out (to a swap file) infrequently used code / data to make more room to cache disk files. (e.g. Linux's vm.swappiness is widely considered a key tunable in terms of setting it differently between servers and desktops. https://unix.stackexchange.com/questions/88693/why-is-swappiness-set-to-60-by-default).
If you alt-tab to a window when many pages of that process have been paged out, it will take some time before the process can redraw its window. (Multiple hard page faults, can be quite slow especially if paging on a rotational disk, not SSD.) So to optimize for latency, you want the kernel to not aggressively swap out pages from running processes, even if they've been idle for a few hours. Those pages, if they'd been free, could have improved throughput for other processes by acting as buffers / cache.
A related factor is I/O scheduling: trying to group IO requests together to minimize HD seek times (for higher throughput and lower average latency), but sometimes at the expense of delaying a few requests for a longer time (higher worst-case latency). Linux for example has many to choose from, including deadline, Completely Fair Queuing (CFQ), and the original elevator (just grouping requests by locality without consideration of fairness or latency). https://wiki.archlinux.org/title/improving_performance#Input/output_schedulers
CPU scheduling is also a factor: a context-switch hurts throughput, as it takes time itself and caches will likely be cold for the new task on this CPU. You also have to run the kernel's schedule() function to decide which task to run next, so that takes away some time from real work.
To minimize latency (for example between a socket message being sent to a process and it waking up when its poll or select system call returns), you want a short timeslice, like Linux HZ=1000. (Timer interrupts every 1 ms to run the scheduler). And you want to be able to pre-empt even the kernel itself, instead of waiting until the kernel is ready to return to the old user-space to consider the possibility of running a different user-space task.
But neither of these helps throughput, and in fact hurt (assuming the workload has enough parallelism to not bottleneck on latency). So HZ=100 was the default for "server" Linux builds, vs. 1000 on "desktop" builds tuned for interactive use. (Modern Linux can be "tickless", not using a fixed timer interrupt on every core at all, instead deciding when to schedule the next interrupt on a case by case basis.)
Real-time kernels take this even further, spending more time on finer-grained locking and stuff like that to enable pausing work and coming back to it later to minimize interrupt latency and other latencies between it being time to do something and actually starting to do that thing. (There are real-time patches for Linux, and there are also totally separate kernels built from the ground up for real-time operation.)
If you have an embedded system controlling a motor or something, you absolutely need hard real-time latency guarantees that it will never take longer than say 1 millisecond from an interrupt pin being asserted to the interrupt handler starting to run.
(Designing the system to make these guarantees possible often comes at the cost of throughput. e.g. obviously you have to pin some memory to make it not swappable, if we're talking about user-space, making it unavailable for cache even if it goes untouched for days.)

Can Multiprocessor CPUs avoid context-switching?

Today's computer architecture are trying to maximize the number of registers. It is faster to access a register (which is an integrated memory circuit near the cpu) than to access first-level cache. The problem is, that each context switch has to save all registers into cache, because the next thread needs other register values. What a modern CPU is doing is to cycle in one second through 100 tasks and everytime it saves the registers, and fetches the old one until the task can be started.
IMHO it would be nice to use one CPU for one task, and no context switching is happening. That means we get 100 CPUs, each 1000 registers which has to be never saved. Is that possible or have I a ignored an important detail?
The only way to completely avoid context switching is by having at least as many cores as there are tasks. Generally, there is no guarantee regarding the maximum number of tasks that may run. Current GPUs and manycore processors and co-processors contain hundreds of small cores. If you put multiple of these things in the same system or in a cluster of systems, you can have thousands or more cores. Still, even if you could avoid context switching with such design, these cores are much slower than the traditional high-end CPU cores, so the net effect might be negative.
But let's take a step back here. The number of context switches is not primarily determined by the number of tasks and cores. Tasks don't just perform computations, they also need to interact with I/O devices and wait for things to happen such as results from other tasks or user input. So some tasks would be in a wait state. The overhead of context switching depends on not only the number of tasks but also the behavior of these tasks.
Both processors architects and OS developers are aware of context switching overhead and employ a variety of techniques to alleviate it. For example, x86 provides a number of instructions that are tuned to saving the context (partially) of the current task. The OS thread scheduler uses techniques such as priorities, preemption (with possibly large time slices on servers), and priority boosting. All of these help reducing the number of context switches and therefore their overall overhead. In addition, reducing the overhead of context switching is not the only thing that matters. In particular, the responsiveness of the system is very important as well, which is at odds with that overhead.

Context Switch questions: What part of the OS is involved in managing the Context Switch?

I was asked to anwer these questions about the OS context switch, the question is pretty tricky and I cannot find any answer in my textbook:
How many PCBs exist in a system at a particular time?
What are two situations that could cause a Context Switch to occur? (I think they are interrupt and termination of a process,but I am not sure )
Hardware support can make a difference in the amount of time it takes to do the switch. What are two different approaches?
What part of the OS is involved in managing the Context Switch?
There can be any number of PCBs in the system at a given moment in time. Each PCB is linked to a process.
Timer interrupts in preemptive kernels or process renouncing control of processor in cooperative kernels. And, of course, process termination and blocking at I/O operations.
I don't know the answer here, but see Marko's answer
One of the schedulers from the kernel.
3: A whole number of possible hardware optimisations
Small register sets (therefore less to save and restore on context switch)
'Dirty' flags for floating point/vector processor register set - allows the kernel to avoid saving the context if nothing has happened to it since it was switched in. FP/VP contexts are usually very large and a great many threads never use them. Some RTOSs provide an API to tell the kernel that a thread never uses FP/VP at all eliminating even more context restores and some saves - particularly when a thread handling an ISR pre-empts another, and then quickly completes, with the kernel immediately rescheduling the original thread.
Shadow register banks: Seen on small embedded CPUs with on-board singe-cycle SRAM. CPU registers are memory backed. As a result, switching bank is merely a case of switching base-address of the registers. This is usually achieved in a few instructions and is very cheap. Usually the number of context is severely limited in these systems.
Shadow interrupt registers: Shadow register banks for use in ISRs. An example is all ARM CPUs that have a shadow bank of about 6 or 7 registers for its fast interrupt handler and a slightly fewer shadowed for the regular one.
Whilst not strictly a performance increase for context switching, this can help ith the cost of context switching on the back of an ISR.
Physically rather than virtually mapped caches. A virtually mapped cache has to be flushed on context switch if the MMU is changed - which it will be in any multi-process environment with memory protection. However, a physically mapped cache means that virtual-physical address translation is a critical-path activity on load and store operations, and a lot of gates are expended on caching to improve performance. Virtually mapped caches were therefore a design choice on some CPUs designed for embedded systems.
The scheduler is the part of the operating systems that manage context switching, it perform context switching in one of the following conditions:
1.Multitasking
2.Interrupt handling
3.User and kernel mode switching
and each process have its own PCB

Is Context Switch a O(1) process

Is context switch a O(1) process or the context switch quantum is dependent on various local factors that can affect the time taken for it?
No, for many different reasons. The main one being that switching context between two threads of a same process, and switching context between two threads of different process imply an address-space change. Changing the address-space is always a costly operation for the caches and memory. On x86 you will need to reload the Page Directory, on PowperPC you will need to invalidate and reload the TLB, ...
Changing address-space is not mandatory when going from a thread to the kernel. Just to remaind, I think Linux has always the kernel address-space loaded (using the PAE facility and having an entry of the 4-entry PDBR locked with the kernel address-space, starting at the AS higher halves, at 0xc0000000).

Are the CPU cycles used up in doing a context switch accounted for in the process context?

If a process causes a lot of context switches, will the CPU cycles used in the context switch be shown in the process CPU utilization?
In other words, if I run a process that essentially repeatedly executes a system call, then should the output of top show an increase in CPU utilization for the process because of the increase in context switching from user to kernel space and vice versa?
Yes, I think it should.
Look at the man pages for top and time in linux and possibly other *nix systems.