Where did Option[T] come from in Scala? - scala

I'm still a noob in Scala development but I have found the Option[T] concept really awesome, specially the pattern matching when used with Some and None. I am even implementing it so some extent in a C# project I'm working on at the moment, but as there is no pattern matching in there is isn't really that awesome.
The real question is, where is the theory behind this object? is it something specific from Scala? Funcional languages? Where can I find more about it?

Most of the time I was thinking that it comes from the Haskell, and has a name of Maybe monad
But after a little research, I've found that there was some references on option types in SML papers, as #ShiDoiSi said. Moreover, it has the same semantics (Some/None) that Scala has.
The elderest paper I was able to find is that (circa '89) (see footnote on the 6th page)

You don't need pattern-matching to use Option. I have written it in C# for you below. Note that the Fold function takes care of anything that would otherwise be pattern-matched.
Pattern-matching is generally discouraged in favour of higher-level combinators. For example, if your particular function can be written using Select you would use it rather than Fold (which is equivalent to pattern-matching). Otherwise, assuming side-effect free code (and therefore, equational reasoning), you would essentially be re-implementing existing code. This holds for all languages, not just Scala or C#.
using System;
using System.Collections;
using System.Collections.Generic;
namespace Example {
/// <summary>
/// An immutable list with a maximum length of 1.
/// </summary>
/// <typeparam name="A">The element type held by this homogenous structure.</typeparam>
/// <remarks>This data type is also used in place of a nullable type.</remarks>
public struct Option<A> : IEnumerable<A> {
private readonly bool e;
private readonly A a;
private Option(bool e, A a) {
this.e = e;
this.a = a;
}
public bool IsEmpty {
get {
return e;
}
}
public bool IsNotEmpty{
get {
return !e;
}
}
public X Fold<X>(Func<A, X> some, Func<X> empty) {
return IsEmpty ? empty() : some(a);
}
public void ForEach(Action<A> a) {
foreach(A x in this) {
a(x);
}
}
public Option<A> Where(Func<A, bool> p) {
var t = this;
return Fold(a => p(a) ? t : Empty, () => Empty);
}
public A ValueOr(Func<A> or) {
return IsEmpty ? or() : a;
}
public Option<A> OrElse(Func<Option<A>> o) {
return IsEmpty ? o() : this;
}
public bool All(Func<A, bool> f) {
return IsEmpty || f(a);
}
public bool Any(Func<A, bool> f) {
return !IsEmpty && f(a);
}
private A Value {
get {
if(e)
throw new Exception("Value on empty Option");
else
return a;
}
}
private class OptionEnumerator : IEnumerator<A> {
private bool z = true;
private readonly Option<A> o;
private Option<A> a;
internal OptionEnumerator(Option<A> o) {
this.o = o;
}
public void Dispose() {}
public void Reset() {
z = true;
}
public bool MoveNext() {
if(z) {
a = o;
z = false;
} else
a = Option<A>.Empty;
return !a.IsEmpty;
}
A IEnumerator<A>.Current {
get {
return o.Value;
}
}
public object Current {
get {
return o.Value;
}
}
}
private OptionEnumerator Enumerate() {
return new OptionEnumerator(this);
}
IEnumerator<A> IEnumerable<A>.GetEnumerator() {
return Enumerate();
}
IEnumerator IEnumerable.GetEnumerator() {
return Enumerate();
}
public static Option<A> Empty {
get {
return new Option<A>(true, default(A));
}
}
public static Option<A> Some(A t) {
return new Option<A>(false, t);
}
}
}

Wikipedia is your friend: http://en.wikipedia.org/wiki/Option_type
Unfortunately it doesn't give any dates, but I'd bet that it's ML-origin predates Haskell's Maybe.

Related

Register delegate-func by convention

On the ContainerBuilder i can do the following:
builder.Register<ScenariosConfig>(c =>
(ScenariosConfig)c.Resolve<ConfigFactory>()
.Create(typeof(ScenariosConfig)))
.SingleInstance();
With assembly scanning i can do the following:
builder.RegisterAssemblyTypes(assemblies)
.Where(HasSingletonAttribute)
.As(t => GetNameMatchingInterfaces(t))
.SingleInstance();
Now the question: Is there any way to achieve the following: ?
builder.RegisterAssemblyTypes(assemblies)
.Where(... some condition)
.CreateByDelegate((container, type)
=> c.Resolve<ConfigFactory>().Create(type))
.SingleInstance();
I've already found out about IRegistrationSource with which i can achieve something similar. However, I'm a bit skeptic about the performance impact of creating ton's of IRegistrationSource's for each of my conventions which require a delegate for creation...
And also there's the fact that IRegistrationSource can't be used whenever you need to resolve all instances of IFoo which should be bound by such a "convention".
In the end we did choose to use an IRegistrationSource. The only alternative i've "found" would have been to detect all types per reflection (not using autofac API...) and then generating a delegate for each and registering this with autofac. Would not really result in code that easily understandable...
So for completeness sake' here's the IRegistrationSource implementation:
public class ConfigConventionRegistrationSource : IRegistrationSource
{
public IEnumerable<IComponentRegistration> RegistrationsFor(
Service service,
Func<Service, IEnumerable<IComponentRegistration>> registrationAccessor)
{
var s = service as IServiceWithType;
if (s != null
&& s.ServiceType.IsClass
&& s.ServiceType.Name.EndsWith("Config")
&& !s.ServiceType.GetInterfaces().Any())
{
yield return RegistrationBuilder
.ForDelegate((componentContext, parameters) =>
CreateConfigByFactory(componentContext, s.ServiceType))
.As(s.ServiceType)
.SingleInstance()
.CreateRegistration();
}
}
private static object CreateConfigByFactory(
IComponentContext componentContext,
Type configType)
{
IConfig configFactory = componentContext.Resolve<IConfig>();
MethodInfo method = Reflector<IConfig>
.GetMethod(x => x.Load<object>())
.GetGenericMethodDefinition()
.MakeGenericMethod(configType);
try
{
return method.Invoke(configFactory, new object[0]);
}
catch (TargetInvocationException tex)
{
ExceptionDispatchInfo
.Capture(tex.InnerException)
.Throw();
throw; // will not be reached as thrown above ;-)
}
}
public bool IsAdapterForIndividualComponents
{
get { return false; }
}
}

How can I dynamically make entity properties read-only?

I'm working with EF 4.5 and DbContext. At business rules layer level, I should implement checks to avoid change entity value properties in some entity scenarios. Sample: StartProjecteDate should be readonly if ProjectIsStarted but not in other status.
I follow DRY principle, for this reason, I should be able to inspect readonly properties list from context and also from UI.
My question:
Is there a DataAnnotation validator that can dynamically set properties as readonly?
(and if not, is there a different / better solution to this problem?)
Notice than I'm working with Web Forms (and Telerik) architecture, a clean and elegant pattern will be welcome.
I'm trying to set and get at run time EditableAttribute as Jesse Webb explains, but I'm not able to get dataannotation attributes from property, my code:
<EditableAttribute(False)>
<MaxLength(400, ErrorMessage:="Màxim 400 caracters")>
Public Property NomInvertebrat As String
Edited Nov 8 2013 after digging docs, it seems that dataanottions if for class but for instance object itself. Perhaps an iReadonlyableProperties interface may be a way.
I have a class containing extension methods that lets me read data annotations like this:
int maxRefLen = ReflectionAPI.GetProperty<Organisation, String>(x => x.Name)
.GetAttribute<StringLengthAttribute>()
.GetValueOrDefault(x => x.MaximumLength, 256);
So if you use it you should be able to do get the value of the EditableAttribute like this:
bool isEditable = ReflectionAPI.GetProperty<Foo, String>(x => x.NomInvertebrat)
.GetAttribute<EditableAttribute>()
.GetValueOrDefault(x => x.AllowEdit, true);
As for setting the data annotations at run-time, I haven't done it myself but I have read that there is a solution here: Setting data-annotations at runtime
Getting a list of all data annotations of a particular type I think would entail reading the entity framework metadata. Again I haven't tried this.
If you add that together I personally think it feels clunky rather than elegant, but you have asked for a solution using DataAnnotations and something more elegant would probably mean getting into your architecture.
I would be inclined to do this:
public bool StartDateIsReadOnly
{
//use this property client-side to disable the input
get{ return Project.IsStarted;}
}
//Implement IValidatable object to do server side validation
public IEnumerable<ValidationResult> Validate(ValidationContext validationContext
{
bool startdateIsChanged = // I'll leave you to work out this bit
var results = new List<ValidationResult>();
if(StartDateIsReadOnly && startdateIsChanged)
results.Add(new ValidationResult("Start Date cannot be changed after project is started");
}
Here is the ReflectionAPI class:
Please note that the class includes part of a hack that #JonSkeet posted and described as "evil". I personally think this bit ain't so bad, but you should read the following references:
Override a generic method for value types and reference types.
Evil code - overload resolution workaround
public static class ReflectionAPI
{
public static int GetValueOrDefault<TInput>(this TInput a, Func<TInput, int> func, int defaultValue)
where TInput : Attribute
//Have to restrict to struct or you get the error:
//The type 'R' must be a non-nullable value type in order to use it as parameter 'T' in the generic type or method 'System.Nullable<T>'
{
if (a == null)
return defaultValue;
return func(a);
}
public static Nullable<TResult> GetValueOrDefault<TInput, TResult>(this TInput a, Func<TInput, TResult> func, Nullable<TResult> defaultValue)
where TInput : Attribute
where TResult : struct
//Have to restrict to struct or you get the error:
//The type 'R' must be a non-nullable value type in order to use it as parameter 'T' in the generic type or method 'System.Nullable<T>'
{
if (a == null)
return defaultValue;
return func(a);
}
//In order to constrain to a class without interfering with the overload that has a generic struct constraint
//we need to add a parameter to the signature that is a reference type restricted to a class
public class ClassConstraintHack<T> where T : class { }
//The hack means we have an unused parameter in the signature
//http://msmvps.com/blogs/jon_skeet/archive/2010/11/02/evil-code-overload-resolution-workaround.aspx
public static TResult GetValueOrDefault<TInput, TResult>(this TInput a, Func<TInput, TResult> func, TResult defaultValue, ClassConstraintHack<TResult> ignored = default(ClassConstraintHack<TResult>))
where TInput : Attribute
where TResult : class
{
if (a == null)
return defaultValue;
return func(a);
}
//I don't go so far as to use the inheritance trick decribed in the evil code overload resolution blog,
//just create some overloads that take nullable types - and I will just keep adding overloads for other nullable type
public static bool? GetValueOrDefault<TInput>(this TInput a, Func<TInput, bool?> func, bool? defaultValue)
where TInput : Attribute
{
if (a == null)
return defaultValue;
return func(a);
}
public static int? GetValueOrDefault<TInput>(this TInput a, Func<TInput, int?> func, int? defaultValue)
where TInput : Attribute
{
if (a == null)
return defaultValue;
return func(a);
}
public static T GetAttribute<T>(this PropertyInfo p) where T : Attribute
{
if (p == null)
return null;
return p.GetCustomAttributes(false).OfType<T>().LastOrDefault();
}
public static PropertyInfo GetProperty<T, R>(Expression<Func<T, R>> expression)
{
if (expression == null)
return null;
MemberExpression memberExpression = expression.Body as MemberExpression;
if (memberExpression == null)
return null;
return memberExpression.Member as PropertyInfo;
}
}
.NET allows you to dynamically change structure of Class by implementing System.ComponentModel.ICustomTypeDescriptor. Most serializers support this interface.
// Sample Serialization
foreach(PropertyDescriptor p in TypeDescriptor.GetProperties(obj)){
string name = p.PropertyName;
object value = p.GetValue(obj);
}
Internally TypeDescriptor uses Reflection, but the implementation allows us to override reflection attributes easily.
Here are three steps of implementation,
// Implement System.ComponentModel.ICustomTypeDescriptor Interface on
// your Entity
public class MyEntity: System.ComponentModel.ICustomTypeDescriptor
{
....
// most methods needs only call to default implementation as shown below
System.ComponentModel.AttributeCollection
System.ComponentModel.ICustomTypeDescriptor.GetAttributes()
{
return TypeDescriptor.GetAttributes(this, true);
}
string System.ComponentModel.ICustomTypeDescriptor.GetClassName()
{
return TypeDescriptor.GetClassName(this, true);
}
string System.ComponentModel.ICustomTypeDescriptor.GetComponentName()
{
return TypeDescriptor.GetComponentName(this, true);
}
System.ComponentModel.TypeConverter System.ComponentModel.ICustomTypeDescriptor.GetConverter()
{
return TypeDescriptor.GetConverter(this, true);
}
System.ComponentModel.EventDescriptor System.ComponentModel.ICustomTypeDescriptor.GetDefaultEvent()
{
return TypeDescriptor.GetDefaultEvent(this, true);
}
System.ComponentModel.PropertyDescriptor System.ComponentModel.ICustomTypeDescriptor.GetDefaultProperty()
{
return TypeDescriptor.GetDefaultProperty(this, true);
}
object System.ComponentModel.ICustomTypeDescriptor.GetEditor(Type editorBaseType)
{
return TypeDescriptor.GetEditor(this, editorBaseType, true);
}
System.ComponentModel.EventDescriptorCollection System.ComponentModel.ICustomTypeDescriptor.GetEvents(Attribute[] attributes)
{
return TypeDescriptor.GetEvents(this, attributes, true);
}
System.ComponentModel.EventDescriptorCollection System.ComponentModel.ICustomTypeDescriptor.GetEvents()
{
return TypeDescriptor.GetEvents(this, true);
}
System.ComponentModel.PropertyDescriptorCollection System.ComponentModel.ICustomTypeDescriptor.GetProperties(Attribute[] attributes)
{
return TypeDescriptor.GetProperties(this, attributes, true);
}
object System.ComponentModel.ICustomTypeDescriptor.GetPropertyOwner(System.ComponentModel.PropertyDescriptor pd)
{
return this;
}
// The Only method that needs different implementation is below
System.ComponentModel.PropertyDescriptorCollection
System.ComponentModel.ICustomTypeDescriptor.GetProperties()
{
// ... you are supposed to create new instance of
// PropertyDescriptorCollection with PropertyDescriptor
PropertyDescriptorCollection pdc = new PropertyDescriptorCollection();
foreach(PropertyDescriptor p in TypeDescriptor.GetProperties(this,true)){
// if readonly..
AtomPropertyDescriptor ap = new AtomPropertyDescriptor(p, p.Name);
// or
AtomPropertyDescriptor ap = new AtomPropertyDescriptor(p, p.Name,
true,
new XmlIgnoreAttribute(),
new ScriptIgnoreAttribute(),
new ReadOnlyAttribute());
pdc.Add(ap);
}
return pdc;
}
}
// And here is the AtomPropertyDescriptorClass
public class AtomPropertyDescriptor : PropertyDescriptor
{
PropertyDescriptor desc;
bool? readOnly = null;
public AtomPropertyDescriptor(PropertyDescriptor pd, string name,
bool? readOnly, params Attribute[] attrs) :
base(name, attrs)
{
desc = pd;
this.readOnly = readOnly;
}
public override bool CanResetValue(object component)
{
return desc.CanResetValue(component);
}
public override Type ComponentType
{
get
{
return desc.ComponentType;
}
}
public override object GetValue(object component)
{
return desc.GetValue(component);
}
public override bool IsReadOnly
{
get
{
if (readOnly.HasValue)
return readOnly.Value;
return desc.IsReadOnly;
}
}
public override Type PropertyType
{
get { return desc.PropertyType; }
}
public override void ResetValue(object component)
{
desc.ResetValue(component);
}
public override void SetValue(object component, object value)
{
desc.SetValue(component, value);
}
public override bool ShouldSerializeValue(object component)
{
return desc.ShouldSerializeValue(component);
}
}
I think what you are looking for is a custom Annotation Attribute like this:
<DisableEditAttribute(this.IsProjectStarted)>
Public Property NomInvertebrat As String
public override bool IsValid(bool value)
{
bool result = true;
// Add validation logic here.
if(value)
{
//Compare Current Value Against DB Value.
}
return result;
}
See MSDN: http://msdn.microsoft.com/en-us/library/cc668224(v=vs.98).aspx

Copying ScriptableObjects

Is there a way of mimicking MonoBehaviour copy semantics in ScriptableObjects?
Say I have a MonoBehaviour like so:
public class DummyClassBehaviour : MonoBehaviour {
public DummyClass DummyClassTest; //ScriptableObject
public DummyClassBehaviour DummyBehaviourTest; //Another DummyClassBehaviour
}
And a ScriptableObject:
public class DummyClass : ScriptableObject {
public string Text = "";
}
When I duplicate(CTRL+D) a GameObject w/ DummyClassBehaviour attached, 'DummyBehaviourTest' copies as you would expect: If it references a MonoBehaviour in the GameObject I'm copying, the copy mechanism updates the reference to the same MonoBehaviour type in the new GameObject. If it references a MonoBehaviour in another GameObject, that reference remains unchanged.
The ScriptableObject, on the other hand, always references the original. So I end up with N GameObject's all sharing the same ScriptableObject (DummyClass) from the original GameObject. I'm using ScriptableObjects to allow serialization of non-Monobehaviour data classes.
As far as I can tell, and please someone correct me if I'm wrong, you cannot modify the serialization behavior of a ScriptableObject to match that of a MonoBehaviour. Namely that it should update references if a duplicate is made.
Instead I opted for a less than optimal solution, but it works. My class is assigned a unique identifier that gets serialized like everything else. I use this ID in DummyBehaviour.Awake() to create a lookup table that I can then use to reassign my DummyClass.
I'm not going to accept my own answer because I don't feel it answers my original question fully, but it's related:
[System.Serializable]
public class DummyClass {
// Unique id is assigned by DummyBehaviour and is unique to the game object
// that DummyBehaviour is attached to.
public int UniqueID = -1;
public string Text = "";
// Override GetHashCode so Dictionary lookups
public override int GetHashCode(){
int hash = 17;
hash = hash * 31 + UniqueID;
return hash;
}
// override equality function, allows dictionary to do comparisons.
public override bool Equals(object obj)
{
if (object.ReferenceEquals(obj, null))return false;
DummyClass item = obj as DummyClass;
return item.UniqueID == this.UniqueID;
}
// Allow checks of the form 'if(dummyClass)'
public static implicit operator bool(DummyClass a)
{
if (object.ReferenceEquals(a, null)) return false;
return (a.UniqueID==-1)?false:true;
}
public static bool operator ==(DummyClass a, DummyClass b)
{
if (object.ReferenceEquals(a, null))
{
return object.ReferenceEquals(b, null);
}
return a.Equals(b);
}
public static bool operator !=(DummyClass a, DummyClass b)
{
if (object.ReferenceEquals(a, null))
{
return object.ReferenceEquals(b, null);
}
return !a.Equals(b);
}
}
And my MonoBehaviour:
[ExecuteInEditMode]
public class DummyBehaviour : MonoBehaviour {
public List<DummyClass> DummyClasses = new List<DummyClass>();
// reassign references based on uniqueid.
void Awake(){
Dictionary<DummyClass,DummyClass> dmap = new Dictionary<DummyClass,DummyClass>();
// iterate over all dummyclasses, reassign references.
for(int i = 0; i < DummyClasses.Count; i++){
DummyClass2 d = DummyClasses[i];
if(dmap.ContainsKey(d)){
DummyClasses[i] = dmap[d];
} else {
dmap[d] = d;
}
}
DummyClasses[0].Text = "All items same";
}
// helper function, for inspector contextmenu, to add more classes from Editor
[ContextMenu ("AddDummy")]
void AddDummy(){
if(DummyClasses.Count==0)DummyClasses.Add(new DummyClass{UniqueID = 1});
else {
// Every item after 0 points to zero, serialization will remove refs during deep copy.
DummyClasses.Add(DummyClasses[0]);
}
UnityEditor.EditorUtility.SetDirty(this);
}
}

Serializing Entity Framework problems

Like several other people, I'm having problems serializing Entity Framework objects, so that I can send the data over AJAX in a JSON format.
I've got the following server-side method, which I'm attempting to call using AJAX through jQuery
[WebMethod]
public static IEnumerable<Message> GetAllMessages(int officerId)
{
SIBSv2Entities db = new SIBSv2Entities();
return (from m in db.MessageRecipients
where m.OfficerId == officerId
select m.Message).AsEnumerable<Message>();
}
Calling this via AJAX results in this error:
A circular reference was detected while serializing an object of type \u0027System.Data.Metadata.Edm.AssociationType
Which is because of the way the Entity Framework creates circular references to keep all the objects related and accessible server side.
I came across the following code from (http://hellowebapps.com/2010-09-26/producing-json-from-entity-framework-4-0-generated-classes/) which claims to get around this problem by capping the maximum depth for references. I've added the code below, because I had to tweak it slightly to get it work (All angled brackets are missing from the code on the website)
using System.Web.Script.Serialization;
using System.Collections.Generic;
using System.Collections;
using System.Linq;
using System;
public class EFObjectConverter : JavaScriptConverter
{
private int _currentDepth = 1;
private readonly int _maxDepth = 2;
private readonly List<int> _processedObjects = new List<int>();
private readonly Type[] _builtInTypes = new[]{
typeof(bool),
typeof(byte),
typeof(sbyte),
typeof(char),
typeof(decimal),
typeof(double),
typeof(float),
typeof(int),
typeof(uint),
typeof(long),
typeof(ulong),
typeof(short),
typeof(ushort),
typeof(string),
typeof(DateTime),
typeof(Guid)
};
public EFObjectConverter( int maxDepth = 2,
EFObjectConverter parent = null)
{
_maxDepth = maxDepth;
if (parent != null)
{
_currentDepth += parent._currentDepth;
}
}
public override object Deserialize( IDictionary<string,object> dictionary, Type type, JavaScriptSerializer serializer)
{
return null;
}
public override IDictionary<string,object> Serialize(object obj, JavaScriptSerializer serializer)
{
_processedObjects.Add(obj.GetHashCode());
Type type = obj.GetType();
var properties = from p in type.GetProperties()
where p.CanWrite &&
p.CanWrite &&
_builtInTypes.Contains(p.PropertyType)
select p;
var result = properties.ToDictionary(
property => property.Name,
property => (Object)(property.GetValue(obj, null)
== null
? ""
: property.GetValue(obj, null).ToString().Trim())
);
if (_maxDepth >= _currentDepth)
{
var complexProperties = from p in type.GetProperties()
where p.CanWrite &&
p.CanRead &&
!_builtInTypes.Contains(p.PropertyType) &&
!_processedObjects.Contains(p.GetValue(obj, null)
== null
? 0
: p.GetValue(obj, null).GetHashCode())
select p;
foreach (var property in complexProperties)
{
var js = new JavaScriptSerializer();
js.RegisterConverters(new List<JavaScriptConverter> { new EFObjectConverter(_maxDepth - _currentDepth, this) });
result.Add(property.Name, js.Serialize(property.GetValue(obj, null)));
}
}
return result;
}
public override IEnumerable<System.Type> SupportedTypes
{
get
{
return GetType().Assembly.GetTypes();
}
}
}
However even when using that code, in the following way:
var js = new System.Web.Script.Serialization.JavaScriptSerializer();
js.RegisterConverters(new List<System.Web.Script.Serialization.JavaScriptConverter> { new EFObjectConverter(2) });
return js.Serialize(messages);
I'm still seeing the A circular reference was detected... exception being thrown!
I solved these issues with the following classes:
public class EFJavaScriptSerializer : JavaScriptSerializer
{
public EFJavaScriptSerializer()
{
RegisterConverters(new List<JavaScriptConverter>{new EFJavaScriptConverter()});
}
}
and
public class EFJavaScriptConverter : JavaScriptConverter
{
private int _currentDepth = 1;
private readonly int _maxDepth = 1;
private readonly List<object> _processedObjects = new List<object>();
private readonly Type[] _builtInTypes = new[]
{
typeof(int?),
typeof(double?),
typeof(bool?),
typeof(bool),
typeof(byte),
typeof(sbyte),
typeof(char),
typeof(decimal),
typeof(double),
typeof(float),
typeof(int),
typeof(uint),
typeof(long),
typeof(ulong),
typeof(short),
typeof(ushort),
typeof(string),
typeof(DateTime),
typeof(DateTime?),
typeof(Guid)
};
public EFJavaScriptConverter() : this(1, null) { }
public EFJavaScriptConverter(int maxDepth = 1, EFJavaScriptConverter parent = null)
{
_maxDepth = maxDepth;
if (parent != null)
{
_currentDepth += parent._currentDepth;
}
}
public override object Deserialize(IDictionary<string, object> dictionary, Type type, JavaScriptSerializer serializer)
{
return null;
}
public override IDictionary<string, object> Serialize(object obj, JavaScriptSerializer serializer)
{
_processedObjects.Add(obj.GetHashCode());
var type = obj.GetType();
var properties = from p in type.GetProperties()
where p.CanRead && p.GetIndexParameters().Count() == 0 &&
_builtInTypes.Contains(p.PropertyType)
select p;
var result = properties.ToDictionary(
p => p.Name,
p => (Object)TryGetStringValue(p, obj));
if (_maxDepth >= _currentDepth)
{
var complexProperties = from p in type.GetProperties()
where p.CanRead &&
p.GetIndexParameters().Count() == 0 &&
!_builtInTypes.Contains(p.PropertyType) &&
p.Name != "RelationshipManager" &&
!AllreadyAdded(p, obj)
select p;
foreach (var property in complexProperties)
{
var complexValue = TryGetValue(property, obj);
if(complexValue != null)
{
var js = new EFJavaScriptConverter(_maxDepth - _currentDepth, this);
result.Add(property.Name, js.Serialize(complexValue, new EFJavaScriptSerializer()));
}
}
}
return result;
}
private bool AllreadyAdded(PropertyInfo p, object obj)
{
var val = TryGetValue(p, obj);
return _processedObjects.Contains(val == null ? 0 : val.GetHashCode());
}
private static object TryGetValue(PropertyInfo p, object obj)
{
var parameters = p.GetIndexParameters();
if (parameters.Length == 0)
{
return p.GetValue(obj, null);
}
else
{
//cant serialize these
return null;
}
}
private static object TryGetStringValue(PropertyInfo p, object obj)
{
if (p.GetIndexParameters().Length == 0)
{
var val = p.GetValue(obj, null);
return val;
}
else
{
return string.Empty;
}
}
public override IEnumerable<Type> SupportedTypes
{
get
{
var types = new List<Type>();
//ef types
types.AddRange(Assembly.GetAssembly(typeof(DbContext)).GetTypes());
//model types
types.AddRange(Assembly.GetAssembly(typeof(BaseViewModel)).GetTypes());
return types;
}
}
}
You can now safely make a call like new EFJavaScriptSerializer().Serialize(obj)
Update : since version Telerik v1.3+ you can now override the GridActionAttribute.CreateActionResult method and hence you can easily integrate this Serializer into specific controller methods by applying your custom [GridAction] attribute:
[Grid]
public ActionResult _GetOrders(int id)
{
return new GridModel(Service.GetOrders(id));
}
and
public class GridAttribute : GridActionAttribute, IActionFilter
{
/// <summary>
/// Determines the depth that the serializer will traverse
/// </summary>
public int SerializationDepth { get; set; }
/// <summary>
/// Initializes a new instance of the <see cref="GridActionAttribute"/> class.
/// </summary>
public GridAttribute()
: base()
{
ActionParameterName = "command";
SerializationDepth = 1;
}
protected override ActionResult CreateActionResult(object model)
{
return new EFJsonResult
{
Data = model,
JsonRequestBehavior = JsonRequestBehavior.AllowGet,
MaxSerializationDepth = SerializationDepth
};
}
}
and finally..
public class EFJsonResult : JsonResult
{
const string JsonRequest_GetNotAllowed = "This request has been blocked because sensitive information could be disclosed to third party web sites when this is used in a GET request. To allow GET requests, set JsonRequestBehavior to AllowGet.";
public EFJsonResult()
{
MaxJsonLength = 1024000000;
RecursionLimit = 10;
MaxSerializationDepth = 1;
}
public int MaxJsonLength { get; set; }
public int RecursionLimit { get; set; }
public int MaxSerializationDepth { get; set; }
public override void ExecuteResult(ControllerContext context)
{
if (context == null)
{
throw new ArgumentNullException("context");
}
if (JsonRequestBehavior == JsonRequestBehavior.DenyGet &&
String.Equals(context.HttpContext.Request.HttpMethod, "GET", StringComparison.OrdinalIgnoreCase))
{
throw new InvalidOperationException(JsonRequest_GetNotAllowed);
}
var response = context.HttpContext.Response;
if (!String.IsNullOrEmpty(ContentType))
{
response.ContentType = ContentType;
}
else
{
response.ContentType = "application/json";
}
if (ContentEncoding != null)
{
response.ContentEncoding = ContentEncoding;
}
if (Data != null)
{
var serializer = new JavaScriptSerializer
{
MaxJsonLength = MaxJsonLength,
RecursionLimit = RecursionLimit
};
serializer.RegisterConverters(new List<JavaScriptConverter> { new EFJsonConverter(MaxSerializationDepth) });
response.Write(serializer.Serialize(Data));
}
}
You can also detach the object from the context and it will remove the navigation properties so that it can be serialized. For my data repository classes that are used with Json i use something like this.
public DataModel.Page GetPage(Guid idPage, bool detach = false)
{
var results = from p in DataContext.Pages
where p.idPage == idPage
select p;
if (results.Count() == 0)
return null;
else
{
var result = results.First();
if (detach)
DataContext.Detach(result);
return result;
}
}
By default the returned object will have all of the complex/navigation properties, but by setting detach = true it will remove those properties and return the base object only. For a list of objects the implementation looks like this
public List<DataModel.Page> GetPageList(Guid idSite, bool detach = false)
{
var results = from p in DataContext.Pages
where p.idSite == idSite
select p;
if (results.Count() > 0)
{
if (detach)
{
List<DataModel.Page> retValue = new List<DataModel.Page>();
foreach (var result in results)
{
DataContext.Detach(result);
retValue.Add(result);
}
return retValue;
}
else
return results.ToList();
}
else
return new List<DataModel.Page>();
}
I have just successfully tested this code.
It may be that in your case your Message object is in a different assembly? The overriden Property SupportedTypes is returning everything ONLY in its own Assembly so when serialize is called the JavaScriptSerializer defaults to the standard JavaScriptConverter.
You should be able to verify this debugging.
Your error occured due to some "Reference" classes generated by EF for some entities with 1:1 relations and that the JavaScriptSerializer failed to serialize.
I've used a workaround by adding a new condition :
!p.Name.EndsWith("Reference")
The code to get the complex properties looks like this :
var complexProperties = from p in type.GetProperties()
where p.CanWrite &&
p.CanRead &&
!p.Name.EndsWith("Reference") &&
!_builtInTypes.Contains(p.PropertyType) &&
!_processedObjects.Contains(p.GetValue(obj, null)
== null
? 0
: p.GetValue(obj, null).GetHashCode())
select p;
Hope this help you.
I had a similar problem with pushing my view via Ajax to UI components.
I also found and tried to use that code sample you provided. Some problems I had with that code:
SupportedTypes wasn't grabbing the types I needed, so the converter wasn't being called
If the maximum depth is hit, the serialization would be truncated
It threw out any other converters I had on the existing serializer by creating its own new JavaScriptSerializer
Here are the fixes I implemented for those issues:
Reusing the same serializer
I simply reused the existing serializer that is passed into Serialize to solve this problem. This broke the depth hack though.
Truncating on already-visited, rather than on depth
Instead of truncating on depth, I created a HashSet<object> of already seen instances (with a custom IEqualityComparer that checked reference equality). I simply didn't recurse if I found an instance I'd already seen. This is the same detection mechanism built into the JavaScriptSerializer itself, so worked quite well.
The only problem with this solution is that the serialization output isn't very deterministic. The order of truncation is strongly dependent on the order that reflections finds the properties. You could solve this (with a perf hit) by sorting before recursing.
SupportedTypes needed the right types
My JavaScriptConverter couldn't live in the same assembly as my model. If you plan to reuse this converter code, you'll probably run into the same problem.
To solve this I had to pre-traverse the object tree, keeping a HashSet<Type> of already seen types (to avoid my own infinite recursion), and pass that to the JavaScriptConverter before registering it.
Looking back on my solution, I would now use code generation templates to create a list of the entity types. This would be much more foolproof (it uses simple iteration), and have much better perf since it would produce a list at compile time. I'd still pass this to the converter so it could be reused between models.
My final solution
I threw out that code and tried again :)
I simply wrote code to project onto new types ("ViewModel" types - in your case, it would be service contract types) before doing my serialization. The intention of my code was made more explicit, it allowed me to serialize just the data I wanted, and it didn't have the potential of slipping in queries on accident (e.g. serializing my whole DB).
My types were fairly simple, and I didn't need most of them for my view. I might look into AutoMapper to do some of this projection in the future.

Refactoring two basic classes

How would you refactor these two classes to abstract out the similarities? An abstract class? Simple inheritance? What would the refactored class(es) look like?
public class LanguageCode
{
/// <summary>
/// Get the lowercase two-character ISO 639-1 language code.
/// </summary>
public readonly string Value;
public LanguageCode(string language)
{
this.Value = new CultureInfo(language).TwoLetterISOLanguageName;
}
public static LanguageCode TryParse(string language)
{
if (language == null)
{
return null;
}
if (language.Length > 2)
{
language = language.Substring(0, 2);
}
try
{
return new LanguageCode(language);
}
catch (ArgumentException)
{
return null;
}
}
}
public class RegionCode
{
/// <summary>
/// Get the uppercase two-character ISO 3166 region/country code.
/// </summary>
public readonly string Value;
public RegionCode(string region)
{
this.Value = new RegionInfo(region).TwoLetterISORegionName;
}
public static RegionCode TryParse(string region)
{
if (region == null)
{
return null;
}
if (region.Length > 2)
{
region = region.Substring(0, 2);
}
try
{
return new RegionCode(region);
}
catch (ArgumentException)
{
return null;
}
}
}
It depends, if they are not going to do much more, then I would probably leave them as is - IMHO factoring out stuff is likely to be more complex, in this case.
Unless you have a strong reason for refactoring (because you are going to add more classes like those in near future) the penalty of changing the design for such a small and contrived example would overcome the gain in maintenance or overhead in this scenario. Anyhow here is a possible design based on generic and lambda expressions.
public class TwoLetterCode<T>
{
private readonly string value;
public TwoLetterCode(string value, Func<string, string> predicate)
{
this.value = predicate(value);
}
public static T TryParse(string value, Func<string, T> predicate)
{
if (value == null)
{
return default(T);
}
if (value.Length > 2)
{
value = value.Substring(0, 2);
}
try
{
return predicate(value);
}
catch (ArgumentException)
{
return default(T);
}
}
public string Value { get { return this.value; } }
}
public class LanguageCode : TwoLetterCode<LanguageCode> {
public LanguageCode(string language)
: base(language, v => new CultureInfo(v).TwoLetterISOLanguageName)
{
}
public static LanguageCode TryParse(string language)
{
return TwoLetterCode<LanguageCode>.TryParse(language, v => new LanguageCode(v));
}
}
public class RegionCode : TwoLetterCode<RegionCode>
{
public RegionCode(string language)
: base(language, v => new CultureInfo(v).TwoLetterISORegionName)
{
}
public static RegionCode TryParse(string language)
{
return TwoLetterCode<RegionCode>.TryParse(language, v => new RegionCode(v));
}
}
This is a rather simple question and to me smells awefully like a homework assignment.
You can obviously see the common bits in the code and I'm pretty sure you can make an attempt at it yourself by putting such things into a super-class.
You could maybe combine them into a Locale class, which stores both Language code and Region code, has accessors for Region and Language plus one parse function which also allows for strings like "en_gb"...
That's how I've seen locales be handled in various frameworks.
These two, as they stand, aren't going to refactor well because of the static methods.
You'd either end up with some kind of factory method on a base class that returns an a type of that base class (which would subsequently need casting) or you'd need some kind of additional helper class.
Given the amount of extra code and subsequent casting to the appropriate type, it's not worth it.
Create a generic base class (eg AbstractCode<T>)
add abstract methods like
protected T GetConstructor(string code);
override in base classes like
protected override RegionCode GetConstructor(string code)
{
return new RegionCode(code);
}
Finally, do the same with string GetIsoName(string code), eg
protected override GetIsoName(string code)
{
return new RegionCode(code).TowLetterISORegionName;
}
That will refactor the both. Chris Kimpton does raise the important question as to whether the effort is worth it.
I'm sure there is a better generics based solution. But still gave it a shot.
EDIT: As the comment says, static methods can't be overridden so one option would be to retain it and use TwoLetterCode objects around and cast them, but, as some other person has already pointed out, that is rather useless.
How about this?
public class TwoLetterCode {
public readonly string Value;
public static TwoLetterCode TryParseSt(string tlc) {
if (tlc == null)
{
return null;
}
if (tlc.Length > 2)
{
tlc = tlc.Substring(0, 2);
}
try
{
return new TwoLetterCode(tlc);
}
catch (ArgumentException)
{
return null;
}
}
}
//Likewise for Region
public class LanguageCode : TwoLetterCode {
public LanguageCode(string language)
{
this.Value = new CultureInfo(language).TwoLetterISOLanguageName;
}
public static LanguageCode TryParse(string language) {
return (LanguageCode)TwoLetterCode.TryParseSt(language);
}
}