RTP/RTSP start up latency: Would this method help to reduce it, and if yes, why we don't have it - streaming

This is probably not the best forum for such a specialized question, but at the moment I don't know of a better one (open to suggestions/recommendations).
I work on a video product which for the last 10+ years has been using proprietary communications protocol (DCOM-based) to send the video across the network. A while ago we recognized the need to standardize and currently are almost at a point of ripping out all that DCOM baggage and replacing it with a fully compliant RTP/RTSP client/server framework.
One thing we noticed during testing over the last few months is that when we switch the client to use RTP/RTSP, there's a noticeable increase in start-up latency. The problem is that it's not us but RTSP.
BEFORE (DCOM): we would send one DCOM command and before that command even returned back to the client, the server would already be sending video. -- total latency 1 RTT
NOW (RTSP): This is the sequence of commands, each one being a separate network request: DESCRIBE, SETUP, SETUP, PLAY (assuming the session has audio and video) -- total of 4 RTTs.
Works as designed - unfortunately it feels like a step backwards because prior user experience was actually better.
Can this be improved? If you stay with the standard, short answer is, NO. However, my team fully controls our entire RTP/RTSP stack and I've been thinking we could introduce a new RTSP command (without touching any of existing commands so we are still fully inter-operable) as a solution: DESCRIBE_SETUP_PLAY.
We could send this one command, pass in types of streams interested in (typically, there's only one video and 0..1 audio). Response would include the full SDP text, as well as all the port information and just like before, server would start streaming instantly without waiting for anything else from the client.
Would this work? any downside that I may not be seeing? I'm curious why this wasn't considered (or was dropped) from official spec, since latency even in local intranet is definitely noticeable.

FYI, it is possible according to the RTSP 1.0 specification:
9.1 Pipelining
A client that supports persistent connections or connectionless mode
MAY "pipeline" its requests (i.e., send multiple requests without
waiting for each response). A server MUST send its responses to those
requests in the same order that the requests were received.
The RTSP 2.0 draft also contains support for pipelining.
However none of the clients/servers I've used implement it AFAIK.

Related

low connectivity protocols or technologies

I'm trying to enhance a server-app-website architecture in reliability, another programmer has developed.
At the moment, android smartphones start a tcp connection to a server component to exchange data. The server takes the data, writes them into a DB and another user can have a look on the data through a website. The problem is that the smartphones very regularly are in locations where connectivity is really bad. The consequence is that the smartphones lose the tcp connection and it's hard to reconnect. Now my question is, if there are any protocols that are so lightweight or accomodating concerning bad connectivity that the data exchange could work better or more reliable.
For example, I was thinking about replacing the raw TCP interface with a RESTful API, but I don't really know how well REST works in this scenario, as I don't have any experience in this area.
Maybe useful to know for answering this question: The server component is programmed in c#. The connecting components are android smartphones.
Please understand that I dont add some code to this question, because in my opinion its just a theoretically question.
Thank you in advance !
REST runs over HTTP which runs over TCP so it would have the same issues with connectivity.
Moving up the stack to the application you could perhaps think in terms of 'interference'. I quite often have to use technical stuff in remote areas with limited reception and it reminds of trying to communicate in a storm. If you think about it, if you're trying to get someone to do something in a storm where they can hardly hear you and the words get blown away (dropped signal), you don't read them the manual on how to fix something, you shout key words such as 'handle', 'pull', 'pull', 'PULL', 'ok'. So the information reaches them in small bursts you can repeat (pull, what? pull, eh? PULL! oh righto!)
Can you redesign the communications between the android app and the server so the server can recognise key 'words' with corresponding data and build up the request over a period of time? If you consider idempotency, each burst of data would not alter the request if it has already been received (pull, PULL!) and over time the android app could send/receive smaller chunks of the request. If the signal stays up, just keep sending. If it goes down, note which parts of the request haven't been sent and retry them when the signal comes back.
So you're sending the request jigsaw-style but the server knows how to reassemble the pieces in the right order. A STOP word at the end tells the server ok this request is complete, go work on it. Until that word arrives the server can store the incomplete request or discard it if no more data comes in.
If the server respond to the first request chunk with an id, the app can use the id to get the response and keep trying until the full response comes back, at which point the server can remove the response from its jigsaw cache. A fair amount of work though.

WebSocket/REST: Client connections?

I understand the main principles behind both. I have however a thought which I can't answer.
Benchmarks show that WebSockets can serve more messages as this website shows: http://blog.arungupta.me/rest-vs-websocket-comparison-benchmarks/
This makes sense as it states the connections do not have to be closed and reopened, also the http headers etc.
My question is, what if the connections are always from different clients all the time (and perhaps maybe some from the same client). The benchmark suggests it's the same clients connecting from what I understand, which would make sense keeping a constant connection.
If a user only does a request every minute or so, would it not be beneficial for the communication to run over REST instead of WebSockets as the server frees up sockets and can handle a larger crowd as to speak?
To fix the issue of REST you would go by vertical scaling, and WebSockets would be horizontal?
Doe this make sense or am I out of it?
This is my experience so far, I am happy to discuss my conclusions about using WebSockets in big applications approached with CQRS:
Real Time Apps
Are you creating a financial application, game, chat or whatever kind of application that needs low latency, frequent, bidirectional communication? Go with WebSockets:
Well supported.
Standard.
You can use either publisher/subscriber model or request/response model (by creating a correlationId with each request and subscribing once to it).
Small size apps
Do you need push communication and/or pub/sub in your client and your application is not too big? Go with WebSockets. Probably there is no point in complicating things further.
Regular Apps with some degree of high load expected
If you do not need to send commands very fast, and you expect to do far more reads than writes, you should expose a REST API to perform CRUD (create, read, update, delete), specially C_UD.
Not all devices prefer WebSockets. For example, mobile devices may prefer to use REST, since maintaining a WebSocket connection may prevent the device from saving battery.
You expect an outcome, even if it is a time out. Even when you can do request/response in WebSockets using a correlationId, still the response is not guaranteed. When you send a command to the system, you need to know if the system has accepted it. Yes you can implement your own logic and achieve the same effect, but what I mean, is that an HTTP request has the semantics you need to send a command.
Does your application send commands very often? You should strive for chunky communication rather than chatty, so you should probably batch those change request.
You should then expose a WebSocket endpoint to subscribe to specific topics, and to perform low latency query-response, like filling autocomplete boxes, checking for unique items (eg: usernames) or any kind of search in your read model. Also to get notification on when a change request (write) was actually processed and completed.
What I am doing in a pet project, is to place the WebSocket endpoint in the read model, then on connection the server gives a connectionID to the client via WebSocket. When the client performs an operation via REST, includes an optional parameter that indicates "when done, notify me through this connectionID". The REST server returns saying if the command was sent correctly to a service bus. A queue consumer processes the command, and when done (well or wrong), if the command had notification request, another message is placed in a "web notification queue" indicating the outcome of the command and the connectionID to be notified. The read model is subscribed to this queue, gets messessages and forward them to the appropriate WebSocket connection.
However, if your REST API is going to be consumed by non-browser clients, you may want to offer a way to check of the completion of a command using the async REST approach: https://www.adayinthelifeof.nl/2011/06/02/asynchronous-operations-in-rest/
I know, that is quite appealing to have an low latency UP channel available to send commands, but if you do, your overall architecture gets messed up. For example, if you are using a CQRS architecture, where is your WebSocket endpoint? in the read model or in the write model?
If you place it on the read model, then you can easy access to your read DB to answer fast search queries, but then you have to couple somehow the logic to process commands, being the read model the responsible of send the commands to the write model and notify if it is unable to do so.
If you place it on the write model, then you have it easy to place commands, but then you need access to your read model and read DB if you want to answer search queries through the WebSocket.
By considering WebSockets part of your read model and leaving command processing to the REST interface, you keep your loose coupling between your read model and your write model.

How can I measure the breakdown of network time spent in iOS?

Uploads from my app are too slow, and I'd like to gather some real data as to where the time is being spent.
By way of example, here are a few stages a request goes through:
Initial radio connection (significant source of latency in EDGE)
DNS lookup (if not cached)
SSL/TLS handshake.
HTTP request upload, including data.
Server processing time.
HTTP response download.
I can address most of these (e.g. by powering up the radio earlier via a dummy request, establishing a dummy HTTP 1.1 connection, etc.), but I'd like to know which ones are actually contributing to network slowness, on actual devices, with my actual data, using actual cell towers.
If I were using WiFi, I could track a bunch of these with Wireshark and some synchronized clocks, but I need cellular data.
Is there any good way to get this detailed breakdown, short of having to (gak!) use very low level socket functions to reproduce my vanilla http request?
Ok, the method I would use is not easy, but it does work. Maybe you're already tried this, but bear with me.
I get a time-stamped log of the sending time of each message, the time each message is received, and the time it is acted upon. If this involves multiple processes or threads, I have each one generate a log, and then merge them into a common timeline.
Then I plot out the timeline. (A tool would be nice, but I did it by hand.)
What I look for is things like 1) messages re-transmitted due to timeouts, 2) delays between the time a message is received and the time it's acted upon.
Usually, this identifies problems that I can fix in the code I can control. This improves things, but then I do it all over again, because chances are pretty good that I missed something the last time.
The result was that a system of asynchronous message-passing can be made to run quite fast, once preventable sources of delay have been eliminated.
There is a tendency in posting questions about performance to look for magic fixes to improve the situation. But, the real magic fix is to refine your diagnostic technique so it tells you what to fix, because it will be different from anyone else's.
An easy solution to this would be once the application get's fired, make a Long Polling connection with the server (you can choose when this connection need's to establish prior hand, and when to disconnect), but that is a kind of a hack if you want to avoid all the sniffing of packets with less api exposure iOS provides.

long polling vs streaming for about 1 update/second

is streaming a viable option?
will there be a performance difference on the server end depending on which i choose?
is one better than the other for this case?
I am working on a GWT application with Tomcat running on the server end. To understand my needs, imagine updating the stock prices of several stocks concurrently.
Do you want the process to be client- or server-driven? In other words, do you want to push new data to the clients as soon as it's available, or would you rather that the clients request new data whenever they see fit, even though that might not be once/second? What is the likelyhood that the client will be able to stick around to wait for an answer? Even though you expect the events to occur once/second, how long does it take between a request from a client and the return from the server? If it's longer than a second, I'd expect you to lean towards pushing the events to the clients, though the other way around, I'd expect polling to be okay. If the response takes longer than the interval, then you're essentially streaming anyway, since there's a new event ready by the time the client receives the last one, so the client could essentially poll continually and always receive events - in this case, streaming the data would actually be more lightweight, since you're removing the connection/negotiation overhead from the process.
I would suspect that server load to be higher for a client-based (pull) subscription, instead of a streaming configuration, since the client would have to re-negotiate the connection each time, instead of leaving a connection open, but each open connection in a streaming model would require server resources as well. It depends on what the trade-off is between how aggressive your negotiation process is vs. how much memory/processing is required for each open connection. I'm no expert, though, so there may be other factors.
UPDATE: This guy talks about the trade-offs between long-polling and streaming, and he seems to say that with HTTP/1.1, the connection re-negotiation process is trivial, so that's not as much of an issue.
It doesn't really matter. The connection re-negotiation overhead is so slim with HTTP1.1, you won't notice any significant performance differences one way or another.
The benefits of long-polling are compatibility and reliability - no issues with proxies, ports, detecting disconnects, etc.
The benefits of "true" streaming would potentially be reduced overhead, but as mentioned already, this benefit is much, much less than it's made out to be.
Personally, I find a well-designed comet server to be the best solution for large numbers of updates and/or server-push.
Certainly, if you're looking to push data, streaming would seem to provide better performance, if your server can handle the expected number of continuous connections. But there's another issue that you don't address: Are you internet or intranet? Streaming has been reported to have some problems across proxies, much as you'd expect. So for a general purpose solution, you would probably be better served by long poll - for an intranet, where you understand the network infrastructure, streaming is quite likely a simpler, better performance solution for you.
The StreamHub GWT Comet Adapter was designed exactly for this scenario of streaming stock quotes. Example here: GWT Streaming Stock Quotes. It updates the stock prices of several stocks concurrently. I think the implementation underneath is Comet which is essentially streaming over HTTP.
Edit: It uses a different technique for each browser. To quote the website:
There are several different underlying
techniques used to implement Comet
including Hidden iFrame,
XMLHttpRequest/Script Long Polling,
and embedded plugins such as Flash.
The introduction of HTML 5 WebSockets
in to future browsers will provide an
alternative mechanism for HTTP
Streaming. StreamHub uses a "best-fit"
approach utilizing the most performant
and reliable technique for each
browser.
Streaming will be faster because data only crosses the wire one way. With polling, the latency is at least twice.
Polling is more resilient to network outages since it doesn't rely on a connection being kept open.
I'd go for polling just for the robustness.
For live stock prices I would absolutely keep the connection open, and ensure user alert/reconnection on disconnect.

Streaming Data

I unsuccessfully searched Google for a good definition and understanding of streaming data and its characteristics. My questions are:
What is streaming data?
How can it be detected?
Correction:
"How can it be detected" is not an appropriate question. Instead my question is:
How is it different from buffered data and other data transfer mechanisms?
It depends in what context you mean but basically streaming data is analagous to asynchronous data. Take the Web as an example. The Web (or HTTP specifically) is (basically) a request-response mechanism in that a client makes a request and receives a response (typically a Web page of some kind).
HTTP doesn't natively support the ability for servers to push content to clients. There are a number of ways this can be faked, including:
Polling: forcing the client to make repeated requests, typically inconspicuously (as far as the client is concerned);
Long-lived connections: this is where the client makes a normal HTTP request but instead of returning immediately the server hangs on to the request until there's something to send back. When the request times out or a response is sent th eclient sends another request. In this way you can fake server push;
Plug-ins: Java applets, Flash, Silverlight and others can be used to achieve this.
Anything where the server effectively sends data to the client (rather than the client asking for it)--regardless of the mechanism and whether or not the client is polling for that data--can be characterised as streaming data.
With non-HTTP transports (eg vanilla TCP) server push is typically easier (but can still run afoul of firewalls and th elike). An example of this might be a sharetrading application that receives market information from a provider. That's streaming data.
How do you detect it? Bit of a vague question. I'm not really sure what you're getting at.
When you say streaming data I think of the following, although I'm not sure if this is what you're getting at. To me it's playing a video/audio file while it's downloading. That's what happens when you go to YouTube and watch a video and it starts playing even though you haven't downloaded the whole video yet. But you can see the video downloading - I'm sure you're familiar with the seek bar filling up as the file downloads. It doesn't necessarily have to be a video or audio file but that's the most common.