As you know, the print function in 8086, puts character in 8bits ( db ) and shows it in screen. Now, i want to print the Unicode character in 8086emu environment not ASCII. So, my challenge is how to use Unicode character in my program ? Does 8086 support Unicode characters?
Thanks in advance :)
If you mean printing in text mode, via interrupt 10h: you can't, as you only have a character map with just 256 characters available. You can redefine how these characters look like (load your custom font), but that still gives you only 256 characters. So you would need to identify the ones you need and then first somehow "render" the ones you need into the character table and for printing you would need to map the Unicode glyph to you character table indexes.
See also my answer to a similar question for more details.
Related
This is a follow-up of this question. I'm interested by different glyphs for the same character, also known as "Unicode Compatibility Characters".
Let's take the following two Arabic "reversed-character" words: كلمة ةملك
First word is:
كلمة
in hex code:
0643 0644 0645 0629
Second word is:
ةملك
in hex code:
0629 0645 0644 0643
If I paste those two words in Microsoft Word using Deja Vu Sans, I get this:
With the following pseudo-code using FreeType2, I get:
FT_Face face;
FT_New_Face(library, "DejaVuSans.ttf", 0, &face);
FT_GlyphSlot slot;
FT_Load_Char(face, each_character, FT_LOAD_RENDER);
slot = face->glyph;
//Use slot->bitmap.buffer
FT_Done_Face(face);
What am I missing? How can I have the right glyphs depending of the context?
My key issue is that I store each "character" (I should say glyph - but for me, character was equivalent to glyph) in a table so it's going to be complicated. I'm limited in speed, not in space. Can I have two different unicode characters for the same logical character?
libraqm is a solution to get the glyth for each character depending of its position in the sentence. But I'm still interested to get the character corresponding to the glyth (I know it's not a 1-to-1 relation). For instance, there are 4 characters for the 4 glyths of the letter Kaf as stated in the comment above.
As far as I understand, a character encoding maps bits to integers and a character set maps integers to characters.
So in the Unicode character set there is a telephone character. It is represented using the integer 9742, more commonly represented using Hexadecimal as 260E. This is then saved to a file using UTF-8 which translates the integer 9742 into 10011000001110. Please correct me if I am wrong.
Yesterday I created a text file that used the Unicode character set and UTF-8 encoding and I saved it to my desktop. I then reopened the file in my text editor and started to manually switch the character sets for fun. Unsurprisingly there were problems and odd characters starting displaying! I noticed that only some of the characters are misrepresented though. This got me thinking, why do only some of the characters break? Why not all?
Someone told me that the characters breaking are those outside the original ASCII specification. Upon reflection this seemed to make sense, as it's only non US characters that break. I was told that because all character sets use the ASCII character set up to the first 128 characters they will remain unbroken, and that it's the characters above 127 that break. Please correct me if I am wrong.
Finally, I got thinking. Are there any character sets that don't respect ASCII? If so, what are they called and what are they used for?
Based on my findings from the comments I am able to answer my own question. Thank you to everyone who commented!
Yes, there are a couple; EBCDIC and Baudot.
When I save a text document in UTF-8 that's basically saying: Computer, use the codepage for UTF8 that's installed somewhere on your computer to figure out, how to turn the 1's and 0's to characters, right?
When I save this content:
激光
äüß
#§
in ISO-8895-1, it becomes this (on Linux, using Kate editor):
æ¿å
äüÃ
#§
What is not displayed here is that in the first and second row that are some weird squares displayed instead of characters (can be seen in developer tools).
So my understanding is that this means that the combination of 0's and 1's that represent 激 in utf-8 is mapped to æ in ISO-8895-1, right? And the weird squares > < happen because there is no mapping for that binary number in the ISO-8895-1 character set so the computer defaults to some other encoding.
Is that correct?
Yes, sort of correct.
If you store a file as UTF-8, it usually gets a special byte combination that indicates its type of encoding at the beginning of the file. I think, Kate (don't know this editor) doesn't recognize this and just displays the file as something else. So basically, your file is still correct, but was just visualized in a wrong way.
The weird squares are another indicator, that Kate doesn't recognize those leading bytes, cause usually editors hide them from the user and just use the information to display the file correctly.
You have it pretty much right. The character U+6FC0 (激) for example is encoded with 3 bytes in UTF-8: 0xE6 0xBF 0x80.
If you interpret these bytes in ISO-8859-1, you get the characters æ¿. Depending on the version of ISO-8859-1, 0x80 is either not mapped to a character at all, or is mapped to a non-printable control character, that's why you can see only two characters for the three bytes.
If you use Windows-1252 instead of ISO-8859-1 you'll see æ¿€.
I am working on decoding text. I am trying to find the character code for the — character, not to be mistaken for -, in ASCII. I have tried unsuccessfully. Does anybody know how to convert it?
Quotation from wiki (Em dash)
When an actual em dash is unavailable—as in the ASCII character set—a double ("--") or triple hyphen-minus ("---") is used. In Unicode, the em dash is U+2014 (decimal 8212).
Em dash character is not a part of ASCII character set.
— is known as an Em Dash. It's character code is \u2014. It is not an ASCII character, so you cannot decode it with the ASCII character set because it is not in the ASCII character table. You would probably want to use UTF8 instead.
Windows
For Windows on a keyboard with a Numeric keypad:
Use Alt+0150 (en dash), Alt+0151 (em dash), or Alt+8722 (minus sign) using the numeric keypad.
This character does not exist in ASCII, but only in Unicode, usually encoded by UTF-8.
In UTF-8, characters are encoded by 2- or 3-byte sequences (or occasionally longer), where none of the two or three bytes is a valid ASCII code, where all of them are outside the ASCII range of 0 through 127.
One suspects that the foregoing only partly answers your question, but if so then this is probably because your question is, inadvertently, only partly asked. For further details, you can extend your question with more specifics.
The character — is not part of the ASCII set.
But if you are looking to convert it to some other format (like U+hex), you can use this online tool. Put your character into the first green box and click "Convert" (above the box)
further below you'll find a number of different codes, including U+hex:
U+2014
Feel free to edit this answer if the link breaks or leave a comment so I can find a replacement.
Alt + 0151 seems to do the trick—perhaps it doesn't work on all keyboards.
alt-196 - while holding down the 'Alt' key, type 196 on the numeric keypad, then release the 'Alt' key
I have a Perl script that takes text values from a MySQL table and writes it to a text file. The problem is, when I open the text file for viewing I am getting a lot of hex characters like \x92 and \x93 which stands for single and double quotes, I guess.
I am using DBI->quote function to escape the special chars before writing the values to the text file. I have tried using Encode::Encoder, but with no luck. The character set on both the tables is latin1.
How do I get rid of those hex characters and get the character to show in the text file?
ISO Latin-1 does not define characters in the range 0x80 to 0x9f, so displaying these bytes in hex is expected. Most likely your data is actually encoded in Windows-1252, which is the same as Latin1 except that it defines additional characters (including left/right quotes) in this range.
\x92 and \x93 are empty characters in the latin1 character set (see here or here). If you are certain that you are indeed dealing with latin1, you can simply delete them.
It sounds like you need to change the character sets on the tables, or translate the non-latin-1 characters into latin-1 equivalents. I'd prefer the first solution. Get used to Unicode; you're going to have to learn it at some point. :)