I'm trying to understand how to use scalaz State to perform a complicated stateful computation. Here is the problem:
Given a List[Int] of potential divisors and a List[Int] of numbers, find a List[(Int, Int)] of matching pairs (divisor, number) where a divisor is allowed to match at most one number.
As a test:
def findMatches(divs: List[Int], nums: List[Int]): List[(Int, Int)]
And with the following input:
findMatches( List(2, 3, 4), List(1, 6, 7, 8, 9) )
We can get at most 3 matches. If we stipulate that the matches must be made in the order in which they occur traversing the lists l-r, then the matches must be:
List( (2, 6) , (3, 9) , (4, 8) )
So the following two tests need to pass:
assert(findMatches(List(2, 3, 4), List(1, 6, 7, 8, 9)) == List((2, 6), (3, 9), (4, 8)))
assert(findMatches(List(2, 3, 4), List(1, 6, 7, 8, 11)) == List((2, 6), (4, 8)))
Here's an imperative solution:
scala> def findMatches(divs: List[Int], nums: List[Int]): List[(Int, Int)] = {
| var matches = List.empty[(Int, Int)]
| var remaining = nums
| divs foreach { div =>
| remaining find (_ % div == 0) foreach { n =>
| remaining = remaining filterNot (_ == n)
| matches = matches ::: List(div -> n)
| }
| }
| matches
| }
findMatches: (divs: List[Int], nums: List[Int])List[(Int, Int)]
Notice that I have to update the state of remaining as well as accumulating matches. It sounds like a job for scalaz traverse!
My useless working has got me this far:
scala> def findMatches(divs: List[Int], nums: List[Int]): List[(Int, Int)] = {
| divs.traverse[({type l[a] = State[List[Int], a]})#l, Int]( div =>
| state { (rem: List[Int]) => rem.find(_ % div == 0).map(n => rem.filterNot(_ == n) -> List(div -> n)).getOrElse(rem -> List.empty[(Int, Int)]) }
| ) ~> nums
| }
<console>:15: error: type mismatch;
found : List[(Int, Int)]
required: Int
state { (rem: List[Int]) => rem.find(_ % div == 0).map(n => rem.filterNot(_ == n) -> List(div -> n)).getOrElse(rem -> List.empty[(Int, Int)]) }
^
Your code only needs to be slightly modified in order to use State and Traverse:
// using scalaz-seven
import scalaz._
import Scalaz._
def findMatches(divs: List[Int], nums: List[Int]) = {
// the "state" we carry when traversing
case class S(matches: List[(Int, Int)], remaining: List[Int])
// initially there are no found pairs and a full list of nums
val initialState = S(List[(Int, Int)](), nums)
// a function to find a pair (div, num) given the current "state"
// we return a state transition that modifies the state
def find(div: Int) = modify((s: S) =>
s.remaining.find(_ % div == 0).map { (n: Int) =>
S(s.matches :+ div -> n, s.remaining -n)
}.getOrElse(s))
// the traversal, with no type annotation thanks to Scalaz7
// Note that we use `exec` to get the final state
// instead of `eval` that would just give us a List[Unit].
divs.traverseS(find).exec(initialState).matches
}
// List((2,6), (3,9), (4,8))
findMatches(List(2, 3, 4), List(1, 6, 7, 8, 9))
You can also use runTraverseS to write the traversal a bit differently:
divs.runTraverseS(initialState)(find)._2.matches
I have finally figured this out after much messing about:
scala> def findMatches(divs: List[Int], nums: List[Int]): List[(Int, Int)] = {
| (divs.traverse[({type l[a] = State[List[Int], a]})#l, Option[(Int, Int)]]( div =>
| state { (rem: List[Int]) =>
| rem.find(_ % div == 0).map(n => rem.filterNot(_ == n) -> Some(div -> n)).getOrElse(rem -> none[(Int, Int)])
| }
| ) ! nums).flatten
| }
findMatches: (divs: List[Int], nums: List[Int])List[(Int, Int)]
I think I'll be looking at Eric's answer for more insight into what is actually going on, though.
Iteration #2
Exploring Eric's answer using scalaz6
scala> def findMatches2(divs: List[Int], nums: List[Int]): List[(Int, Int)] = {
| case class S(matches: List[(Int, Int)], remaining: List[Int])
| val initialState = S(nil[(Int, Int)], nums)
| def find(div: Int, s: S) = {
| val newState = s.remaining.find(_ % div == 0).map { (n: Int) =>
| S(s.matches :+ div -> n, s.remaining filterNot (_ == n))
| }.getOrElse(s)
| newState -> newState.matches
| }
| val findDivs = (div: Int) => state((s: S) => find(div, s))
| (divs.traverse[({type l[a]=State[S, a]})#l, List[(Int, Int)]](findDivs) ! initialState).join
| }
findMatches2: (divs: List[Int], nums: List[Int])List[(Int, Int)]
scala> findMatches2(List(2, 3, 4), List(1, 6, 7, 8, 9))
res11: List[(Int, Int)] = List((2,6), (2,6), (3,9), (2,6), (3,9), (4,8))
The join on the List[List[(Int, Int)]] at the end is causing grief. Instead we can replace the last line with:
(divs.traverse[({type l[a]=State[S, a]})#l, List[(Int, Int)]](findDivs) ~> initialState).matches
Iteration #3
In fact, you can do away with the extra output of a state computation altogether and simplify even further:
scala> def findMatches2(divs: List[Int], nums: List[Int]): List[(Int, Int)] = {
| case class S(matches: List[(Int, Int)], remaining: List[Int])
| def find(div: Int, s: S) =
| s.remaining.find(_ % div == 0).map( n => S(s.matches :+ div -> n, s.remaining filterNot (_ == n)) ).getOrElse(s) -> ()
| (divs.traverse[({type l[a]=State[S, a]})#l, Unit](div => state((s: S) => find(div, s))) ~> S(nil[(Int, Int)], nums)).matches
| }
findMatches2: (divs: List[Int], nums: List[Int])List[(Int, Int)]
Iteration #4
modify described above by Apocalisp is also available in scalaz6 and removes the need to explicitly supply the (S, ()) pair (although you do need Unit in the type lambda):
scala> def findMatches2(divs: List[Int], nums: List[Int]): List[(Int, Int)] = {
| case class S(matches: List[(Int, Int)], remaining: List[Int])
| def find(div: Int) = modify( (s: S) =>
| s.remaining.find(_ % div == 0).map( n => S(s.matches :+ div -> n, s.remaining filterNot (_ == n)) ).getOrElse(s))
| (divs.traverse[({type l[a]=State[S, a]})#l, Unit](div => state(s => find(div)(s))) ~> S(nil, nums)).matches
| }
findMatches2: (divs: List[Int], nums: List[Int])List[(Int, Int)]
scala> findMatches2(List(2, 3, 4), List(1, 6, 7, 8, 9))
res0: List[(Int, Int)] = List((2,6), (3,9), (4,8))
Related
if i have
scala> test
res3: Array[java.io.Serializable] = Array(Array((AA,BB), (CC,DD)), (EE,FF))
and i want to convert this to
Array[(Any, Any)] = Array((AA,BB), (CC,DD), (EE,FF))
I can convert using flatMap function like this
scala> val test2 = test.flatMap{
| case (a,b) => Array((a,b))
| case i:Array[Any] => i.flatMap{
| case (a,b)=> Array((a,b))}
| }
test2: Array[(Any, Any)] = Array((AA,BB), (CC,DD), (EE,FF))
but I want to make function for All depth of Arrays.
so I tried
scala> def flatArray(array: Array[Any]): Array[(Any,Any)] ={
| array.flatMap{
| case (a,b) => Array((a,b))
| case i:Array[Any] => flatArray(i)
| }
| }
scala> val test2 = flatArray(test)
<console>:9: error: type mismatch;
found : Array[java.io.Serializable]
required: Array[Any]
Note: java.io.Serializable <: Any, but class Array is invariant in type T.
You may wish to investigate a wildcard type such as `_ <: Any`. (SLS 3.2.10)
val test2 = flatArray(test)
^
what's the problem ???
You can do flattening the following way:
def flatten(arr:Array[Any]):Array[(Any,Any)] =
arr.flatMap {
case (a,b) => Array((a,b))
case v:Array[Any] => flatten(v)
}
Well, I have a solution, maybe not the best one, since it uses non-tail recursion that may lead to a problems when you have a lot of data. Also, it assumes, that you don't have mixed tuples and arrays on the same level (like Array(1 -> 2, Array(2 -> 3)). So, just for reference:
import scala.collection.mutable.ArrayBuffer
val a: Array[Any] =
Array(
Array(1 -> 2, 2 -> 3),
Array(
Array(7 -> 1, 8 -> 3),
Array(
Array(1 -> 4, 5 -> 6, 12 -> 5),
Array(3 -> 4)
)
)
)
def flattenImpl(arr: Array[Any], acc: ArrayBuffer[(Int, Int)]): Array[(Int, Int)] = {
arr.headOption match {
case None => acc.toArray
case Some((a: Int, b:Int)) => flattenImpl(arr.tail, acc :+ a -> b)
case Some(a: Array[Any]) => flattenImpl(a, acc ++ flattenImpl(arr.tail, acc))
}
}
def flatten(arr: Array[Any]): Array[(Int, Int)] = flattenImpl(arr, ArrayBuffer())
val res = flatten(a)
res: Array[(Int, Int)] = Array((3,4), (1,4), (5,6), (12,5), (7,1), (8,3), (1,2), (2,3))
I want to split a list of elements into a list of lists such that neighboring elements in the inner list satisfy a given condition.
A simple condition would be neighboring elements are equal. Then if the input is List(1,1,1,2,2,3,3,3,3) output is List(List(1,1,1),List(2,2),List(3,3,3)).
Another condition could be current element should be greater than prev element. Then if the input is List(1,2,3,1,4,6,5,7,8), the output is List(List(1,2,3), List(1,4,6), List(5,7,8)). It would also be wonderful if the method can act on Iterator. The typedef of the method is
def method[A](lst:List[A], cond:(A,A)=>Boolean):List[List[A]]
def method[A](lst:Iterator[A], cond:(A,A)=>Boolean):Iterator[Iterator[A]]
You can use sliding together with span in a recursive function for the desired effect. This quick and dirty version is less efficient, but terser than some of the alternative:
def method[A](lst: TraversableOnce[A], cond: (A, A) => Boolean): List[List[A]] = {
val iterable = lst.toIterable
iterable.headOption.toList.flatMap { head =>
val (next, rest) = iterable.sliding(2).filter(_.size == 2).span(x => cond(x.head, x.last))
(head :: next.toList.map(_.last)) :: method(rest.map(_.last), cond)
}
}
If you want to lazily execute the code, you can return an Iterator[List[A]] instead of List[List[A]]:
def method[A](lst: TraversableOnce[A], cond: (A, A) => Boolean): Iterator[List[A]] = {
val iterable = lst.toIterable
iterable.headOption.toIterator.flatMap { head =>
val (next, rest) = iterable.sliding(2).filter(_.size == 2).span(x => cond(x.head, x.last))
Iterator(head :: next.toList.map(_.last)) ++ method(rest.map(_.last), cond)
}
}
And you can verify that this is lazy:
val x = (Iterator.range(0, 10) ++ Iterator.range(3, 5) ++ Iterator.range(1, 3)).map(x => { println(x); x })
val iter = method(x, (x: Int, y: Int) => x < y) //Only prints 0-9, and then 3!
iter.take(2).toList //Prints more
iter.toList //Prints the rest
You can make it even lazier by returning an Iterator[Iterator[A]]:
def method[A](lst: TraversableOnce[A], cond: (A, A) => Boolean): Iterator[Iterator[A]] = {
val iterable = lst.toIterable
iterable.headOption.toIterator.flatMap { head =>
val (next, rest) = iterable.sliding(2).filter(_.size == 2).span(x => cond(x.head, x.last))
Iterator(Iterator(head) ++ next.toIterator.map(_.last)) ++ method(rest.map(_.last), cond)
}
}
As a relatively unrelated side note, when you have generic parameters of this form, you're better off using 2 parameter lists:
def method[A](lst: TraversableOnce[A])(cond: (A, A) => Boolean)
When you have 2 parameter lists like this, the type inference can be a little bit smarter:
//No need to specify parameter types on the anonymous function now!
method(List(1, 3, 2, 3, 4, 1, 8, 1))((x, y) => x < y).toList
//You can now even use underscore anonymous function notation!
method(List(1, 4, 2, 3, 4, 1, 8))(_ < _)
Here is something close (I believe) to what you are asking for. The only issue with this is that it always produces a List of Lists for the result as opposed to being based on the input type:
val iter = Iterator(1,1,2,2,2,3,3,3)
val list = List(4,5,5,5,5,6,6)
def same(a:Int,b:Int) = a == b
def gt(a:Int, b:Int) = b > a
println(groupByPred(iter, same))
println(groupByPred(list, gt))
def groupByPred[L <: TraversableOnce[T], T](trav:L, cond:(T,T) => Boolean):List[List[T]] = {
val (ret, inner) =
trav.foldLeft((List.empty[List[T]], List.empty[T])){
case ((acc, list), el) if list.isEmpty || cond(list.head, el) => (acc,el :: list)
case ((acc, list), el) => (list.reverse :: acc,el :: List.empty)
}
(inner.reverse :: ret).reverse
}
If you run that code, the output should be the following:
List(List(1, 1), List(2, 2, 2), List(3, 3, 3))
List(List(4, 5), List(5), List(5), List(5, 6), List(6))
Try this.
Puts the head of the list as the first element of the first element of the List of Lists. Then adds things to that first List if the condition holds. If it doesn't, starts a new List with the current entry as the first element.
Both the inner list and the outer are constructed in the wrong order. So reverse each element of the outer List (with map) and then reverse the outer list.
val xs = List(1, 1, 1, 2, 2, 3, 3, 3, 3)
val ys = List(1, 2, 3, 1, 4, 6, 5, 7, 8)
def method[A](lst: List[A], cond: (A, A) => Boolean): List[List[A]] = {
lst.tail.foldLeft(List(List(lst.head))) { (acc, e) =>
if (cond(acc.head.head, e))
(e :: acc.head) :: acc.tail
else List(e) :: acc
}.map(_.reverse).reverse
}
method(xs, { (a: Int, b: Int) => a == b })
//> res0: List[List[Int]] = List(List(1, 1, 1), List(2, 2), List(3, 3, 3, 3))
method(ys, { (a: Int, b: Int) => a < b })
//> res1: List[List[Int]] = List(List(1, 2, 3), List(1, 4, 6), List(5, 7, 8))
Iterator overload
def method[A](iter:Iterator[A], cond: (A, A) => Boolean): List[List[A]] = {
val h = iter.next
iter.foldLeft(List(List(h))) { (acc, e) =>
if (cond(acc.head.head, e))
(e :: acc.head) :: acc.tail
else List(e) :: acc
}.map(_.reverse).reverse
}
method(xs.toIterator, { (a: Int, b: Int) => a == b })
//> res0: List[List[Int]] = List(List(1, 1, 1), List(2, 2), List(3, 3, 3, 3))
method(ys.toIterator, { (a: Int, b: Int) => a < b })
//> res1: List[List[Int]] = List(List(1, 2, 3), List(1, 4, 6), List(5, 7, 8))
More generic version (hat-tip to #cmbaxter for some ideas here) that works with Lists, Iterators and anything that can be traversed once:
def method[A, T <: TraversableOnce[A]](trav: T, cond: (A, A) => Boolean)
: List[List[A]] = {
trav.foldLeft(List(List.empty[A])) { (acc, e) =>
if (acc.head.isEmpty || !cond(acc.head.head, e)) List(e) :: acc
else (e :: acc.head) :: acc.tail
}.map(_.reverse).reverse
}
How does the A turn to be Nothing in the process?
def seq2map[A](src: Seq[A]): Map[A, A] = {
def pair = for {
f <- src.headOption
s <- src.headOption
} yield (f, s)
Stream continually pair takeWhile(_ isDefined) toMap
}
error: Expression of type Map[Nothing, Nothing] doesn't conform to expected type Map[A, A]
Thank you!
I get
<console>:12: error: Cannot prove that Option[(A, A)] <:< (T, U).
Stream continually pair takeWhile(_ isDefined) toMap
^
because
scala> val src = (1 to 10).toSeq
src: scala.collection.immutable.Range = Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
scala> def pair = for {
| f <- src.headOption
| s <- src.headOption
| } yield (f, s)
pair: Option[(Int, Int)]
is not a pair, but an Option.
scala> (Stream continually pair takeWhile (_.isDefined)).flatten
res0: scala.collection.immutable.Stream[(Int, Int)] = Stream((1,1), ?)
is a stream of pairs.
Just waiting for the game to start.
This is a simple exercise I am solving in Scala: given a list l return a new list, which contains every n-th element of l. If n > l.size return an empty list.
def skip(l: List[Int], n: Int) =
Range(1, l.size/n + 1).map(i => l.take(i * n).last).toList
My solution (see above) seem to work but I am looking for smth. simpler. How would you simplify it?
Somewhat simpler:
scala> val l = (1 to 10).toList
l: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
// n == 3
scala> l.drop(2).grouped(3).map(_.head).toList
res0: List[Int] = List(3, 6, 9)
// n > l.length
scala> l.drop(11).grouped(12).map(_.head).toList
res1: List[Int] = List()
(the toList just to force the iteratot to be evaluated)
Works with infinite lists:
Stream.from(1).drop(2).grouped(3).map(_.head).take(4).toList
res2: List[Int] = List(3, 6, 9, 12)
scala> def skip[A](l:List[A], n:Int) =
l.zipWithIndex.collect {case (e,i) if ((i+1) % n) == 0 => e} // (i+1) because zipWithIndex is 0-based
skip: [A](l: List[A], n: Int)List[A]
scala> val l = (1 to 10).toList
l: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
scala> skip(l,3)
res2: List[Int] = List(3, 6, 9)
scala> skip(l,11)
res3: List[Int] = List()
A bit more readable and the loop size is O(l.length/n):
def skip(l: List[Int], n: Int) = {
require(n > 0)
for (step <- Range(start = n - 1, end = l.length, step = n))
yield l(step)
}
Fold left approach O(n)
def skip(xs: List[Int], n: Int) = {
xs.foldLeft((List[Int](), n)){ case ((acc, counter), x) =>
if(counter==1)
(x+:acc,n)
else
(acc, counter-1)
}
._1
.reverse
}
scala > skip(List(1,2,3,4,5,6,7,8,9,10), 3)
Tailrec less readable approach O(n)
import scala.annotation.tailrec
def skipTR(xs: List[Int], n: Int) = {
#tailrec
def go(ys: List[Int], acc: List[Int], counter: Int): List[Int] = ys match {
case k::ks=>
if(counter==1)
go(ks, k+:acc , n)
else
go(ks, acc, counter-1)
case Nil => acc
}
go(xs, List(), n).reverse
}
skipTR(List(1,2,3,4,5,6,7,8,9,10), 3)
You could omit toList if you don't mind an iterator:
scala> def skip[A](l:List[A], n:Int) =
l.grouped(n).filter(_.length==n).map(_.last).toList
skip: [A](l: List[A], n: Int)List[A]
scala> skip (l,3)
res6: List[Int] = List(3, 6, 9)
Two approaches based in filter on indexes, as follows,
implicit class RichList[A](val list: List[A]) extends AnyVal {
def nthA(n: Int) = n match {
case 0 => List()
case _ => (1 to a.size).filter( _ % n == 0).map { i => list(i-1)}
}
def nthB(n: Int) = n match {
case 0 => List()
case _ => list.zip(Stream.from(1)).filter(_._2 % n == 0).unzip._1
}
}
and so for a given list
val a = ('a' to 'z').toList
we have that
a.nthA(5)
res: List(e, j, o, t, y)
a.nthA(123)
res: List()
a.nthA(0)
res: List()
Update
Using List.tabulate as follows,
implicit class RichList[A](val list: List[A]) extends AnyVal {
def nthC(n: Int) = n match {
case 0 => List()
case n => List.tabulate(list.size) {i =>
if ((i+1) % n == 0) Some(list(i))
else None }.flatten
}
}
I have some financial data gathered at a List[(Int, Double)], like this:
val snp = List((2001, -13.0), (2002, -23.4))
With this, I wrote a formula that would transform the list, through map, into another list (to demonstrate investment grade life insurance), where losses below 0 are converted to 0, and gains above 15 are converted to 15, like this:
case class EiulLimits(lower:Double, upper:Double)
def eiul(xs: Seq[(Int, Double)], limits:EiulLimits): Seq[(Int, Double)] = {
xs.map(item => (item._1,
if (item._2 < limits.lower) limits.lower
else if (item._2 > limits.upper) limits.upper
else item._2
}
Is there anyway to extract the tuple's values inside this, so I don't have to use the clunky _1 and _2 notation?
List((1,2),(3,4)).map { case (a,b) => ... }
The case keyword invokes the pattern matching/unapply logic.
Note the use of curly braces instead of parens after map
And a slower but shorter quick rewrite of your code:
case class EiulLimits(lower: Double, upper: Double) {
def apply(x: Double) = List(x, lower, upper).sorted.apply(1)
}
def eiul(xs: Seq[(Int, Double)], limits: EiulLimits) = {
xs.map { case (a,b) => (a, limits(b)) }
}
Usage:
scala> eiul(List((1, 1.), (3, 3.), (4, 4.), (9, 9.)), EiulLimits(3., 7.))
res7: Seq[(Int, Double)] = List((1,3.0), (3,3.0), (4,4.0), (7,7.0), (9,7.0))
scala> val snp = List((2001, -13.0), (2002, -23.4))
snp: List[(Int, Double)] = List((2001,-13.0), (2002,-23.4))
scala> snp.map {case (_, x) => x}
res2: List[Double] = List(-13.0, -23.4)
scala> snp.map {case (x, _) => x}
res3: List[Int] = List(2001, 2002)