(MATLAB) understand quadl vs quadv - matlab

Im trying to understand why a call like this
G = const * quadv(fun,a,b,tol)
returns different values than
lenB = length(b)
for 1 = 1:lenB
G(i) = const .* quadl(fun,a,b,tol)
end
and how to achieve both calls to return the same values ?
EDIT:
I would like to run the quadl faster for arrays as well. So I would formulate the above question:
If it is possible, how to call quadl also for arrays (similar like the quadv call above), and thus increase performance by the calculations?

Matlab's quadl uses adaptive Lobatto quadrature; quadv uses adaptive Simpson's rule.
The quality of the answer you get might depend on the function you assume. What does your test fun look like?
I'll assume that you're passing the same function, limits, and tolerance to both calls. That will mean the differences are smaller than the tolerance.
The two methods are different - Gaussian quadrature is not the same as Simpson's rule:
http://en.wikipedia.org/wiki/Gaussian_quadrature

If you take a look at the help of quadl and quadv, you see that quadl uses a different algorithm to integrate the function.
Numerical analysis almost never yields perfect results, so you cannot expect to get identical results.

Related

Normalization of integrand for numerical integration in Matlab

First off, I'm not sure if this is the best place to post this, but since there isn't a dedicated Matlab community I'm posting this here.
To give a little background, I'm currently prototyping a plasma physics simulation which involves triple integration. The innermost integral can be done analytically, but for the outer two this is just impossible. I always thought it's best to work with values close to unity and thus normalized the my innermost integral such that it is unit-less and usually takes values close to unity. However, compared to an earlier version of the code where the this innermost integral evaluated to values of the order of 1e-50, the numerical double integration, which uses the native Matlab function integral2 with target relative tolerance of 1e-6, now requires around 1000 times more function evaluations to converge. As a consequence my simulation now takes roughly 12h instead of the previous 20 minutes.
Question
So my questions are:
Is it possible that the faster convergence in the older version is simply due to the additional evaluations vanishing as roundoff errors and that the results thus arn't trustworthy even though it passes the 1e-6 relative tolerance? In the few tests I run the results seemed to be the same in both versions though.
What is the best practice concerning the normalization of the integrand for numerical integration?
Is there some way to improve the convergence of numerical integrals, especially if the integrand might have singularities?
I'm thankful for any help or insight, especially since I don't fully understand the inner workings of Matlab's integral2 function and what should be paid attention to when using it.
If I didn't know any better I would actually conclude, that the integrand which is of the order of 1e-50 works way better than one of say the order of 1e+0, but that doesn't seem to make sense. Is there some numerical reason why this could actually be the case?
TL;DR when multiplying the function to be integrated numerically by Matlab 's integral2 with a factor 1e-50 and then the result in turn with a factor 1e+50, the integral gives the same result but converges way faster and I don't understand why.
edit:
I prepared a short script to illustrate the problem. Here the relative difference between the two results was of the order of 1e-4 and thus below the actual relative tolerance of integral2. In my original problem however the difference was even smaller.
fun = #(x,y,l) l./(sqrt(1-x.*cos(y)).^5).*((1-x).*sin(y));
x = linspace(0,1,101);
y = linspace(0,pi,101).';
figure
surf(x,y,fun(x,y,1));
l = linspace(0,1,101); l=l(2:end);
v1 = zeros(1,100); v2 = v1;
tval = tic;
for i=1:100
fun1 = #(x,y) fun(x,y,l(i));
v1(i) = integral2(fun1,0,1,0,pi,'RelTol',1e-6);
end
t1 = toc(tval)
tval = tic;
for i=1:100
fun1 = #(x,y) 1e-50*fun(x,y,l(i));
v2(i) = 1e+50*integral2(fun1,0,1,0,pi,'RelTol',1e-6);
end
t2 = toc(tval)
figure
hold all;
plot(l,v1);
plot(l,v2);
plot(l,abs((v2-v1)./v1));

Adaptive sampling in matlab

Suppose I have a function which is extremely time consuming to evaluate and I want to generate an interpolated version of it using as few function evaluation as possible. Is there a built in function in Matlab to do that (something like FunctionInterpolation from Mathematica) ?
The procedure is not very difficult and I am aware of freely available implementations (in other languages) like http://scipy-central.org/item/53/1/adaptive-sampling-of-1d-functions but considering that matlab has build in triangular mesh refinement, I think there might be also something like this to be used in one dimension.
You may use fplot with two output arguments, as
[X,Y] = fplot(fun,limits,...)
described in
http://www.mathworks.fr/fr/help/matlab/ref/fplot.html
for instance
fun = #(x) 1./(1+x.^2)
[X,Y] = fplot(fun,[-10, 10])

Fast integration technique in matlab?

So I have the following function that I need to code:
Lm = 1/d Integral[exp(-i(a(x)t+mKx)) dx (from 0 to d)
What I have right now is:
L = (1/period) * int(exp(- 1i*(ax*t+(m*K*x))),x,0,period);
subs(L,[t,m],[beta0,tt]);
Where everything is symbolic. This takes a very long time if ax is anything challenging (sin(x)). So I would like to figure out a way to simplify this. I have an array a_x(xi) and I have been referred by colleagues to look into the quad function, but so far I am not sure how to use that.
thanks
If your integrand doesn't change (variables not a function of x) then I see no reason why you couldn't take the output of the symbolic integration and use it numerically without performing the integration:
kmp = K.*m.*period/2
L = exp(-1i*(ax.*t+kmp)).*sin(kmp)./kmp
Otherwise, yes, you should look into Matlab's quadrature integration methods – they work vary similary to sym/int, but are for numerical values and functions. In newer versions of Matab try integral or use quadgk. Something like this:
fun = #(x)exp(-1i*(ax*t+(m*K*x)));
L = (1/period)*integral(fun,0,period);
Note that for highly oscillatory functions, most quadrature methods have difficulty. You should check that your results are actually correct in such cases. If Matlab's built-in quadrature routines have trouble, you could look into Levin integration schemes or maybe this.

Goodness of fit with MATLAB and chi-square test

I would like to measure the goodness-of-fit to an exponential decay curve. I am using the lsqcurvefit MATLAB function. I have been suggested by someone to do a chi-square test.
I would like to use the MATLAB function chi2gof but I am not sure how I would tell it that the data is being fitted to an exponential curve
The chi2gof function tests the null hypothesis that a set of data, say X, is a random sample drawn from some specified distribution (such as the exponential distribution).
From your description in the question, it sounds like you want to see how well your data X fits an exponential decay function. I really must emphasize, this is completely different to testing whether X is a random sample drawn from the exponential distribution. If you use chi2gof for your stated purpose, you'll get meaningless results.
The usual approach for testing the goodness of fit for some data X to some function f is least squares, or some variant on least squares. Further, a least squares approach can be used to generate test statistics that test goodness-of-fit, many of which are distributed according to the chi-square distribution. I believe this is probably what your friend was referring to.
EDIT: I have a few spare minutes so here's something to get you started. DISCLAIMER: I've never worked specifically on this problem, so what follows may not be correct. I'm going to assume you have a set of data x_n, n = 1, ..., N, and the corresponding timestamps for the data, t_n, n = 1, ..., N. Now, the exponential decay function is y_n = y_0 * e^{-b * t_n}. Note that by taking the natural logarithm of both sides we get: ln(y_n) = ln(y_0) - b * t_n. Okay, so this suggests using OLS to estimate the linear model ln(x_n) = ln(x_0) - b * t_n + e_n. Nice! Because now we can test goodness-of-fit using the standard R^2 measure, which matlab will return in the stats structure if you use the regress function to perform OLS. Hope this helps. Again I emphasize, I came up with this off the top of my head in a couple of minutes, so there may be good reasons why what I've suggested is a bad idea. Also, if you know the initial value of the process (ie x_0), then you may want to look into constrained least squares where you bind the parameter ln(x_0) to its known value.

Doing a PCA using an optimization in Matlab

I'd like to find the principal components of a data matrix X in Matlab by solving the optimization problem min||X-XBB'||, where the norm is the Frobenius norm, and B is an orthonormal matrix. I'm wondering if anyone could tell me how to do that. Ideally, I'd like to be able to do this using the optimization toolbox. I know how to find the principal components using other methods. My goal is to understand how to set up and solve an optimization problem which has a matrix as the answer. I'd very much appreciate any suggestions or comments.
Thanks!
MJ
The thing about Optimization is that there are different methods to solve a problem, some of which can require extensive computation.
Your solution, given the constraints for B, is to use fmincon. Start by creating a file for the non-linear constraints:
function [c,ceq] = nonLinCon(x)
c = 0;
ceq = norm((x'*x - eye (size(x))),'fro'); %this checks to see if B is orthonormal.
then call the routine:
B = fmincon(#(B) norm(X - X*B*B','fro'),B0,[],[],[],[],[],[],#nonLinCon)
with B0 being a good guess on what the answer will be.
Also, you need to understand that this algorithms tries to find a local minimum, which may not be the solution you ultimately want. For instance:
X = randn(1,2)
fmincon(#(B) norm(X - X*B*B','fro'),rand(2),[],[],[],[],[],[],#nonLinCon)
ans =
0.4904 0.8719
0.8708 -0.4909
fmincon(#(B) norm(X - X*B*B','fro'),rand(2),[],[],[],[],[],[],#nonLinCon)
ans =
0.9864 -0.1646
0.1646 0.9864
So be careful, when using these methods, and try to select a good starting point
The Statistics toolbox has a built-in function 'princomp' that does PCA. If you want to learn (in general, without the optimization toolbox) how to create your own code to do PCA, this site is a good resource.
Since you've specifically mentioned wanting to use the Optimization Toolbox and to set this up as an optimization problem, there is a very well-trusted 3rd-party package known as CVX from Stanford University that can solve the optimization problem you are referring to at this site.
Do you have the optimization toolbox? The documentation is really good, just try one of their examples: http://www.mathworks.com/help/toolbox/optim/ug/brg0p3g-1.html.
But in general the optimization function look like this:
[OptimizedMatrix, OptimizedObjectiveFunction] = optimize( (#MatrixToOptimize) MyObjectiveFunction(MatrixToOptimize), InitialConditionsMatrix, ...optional constraints and options... );
You must create MyObjectiveFunction() yourself, it must take the Matrix you want to optimize as an input and output a scalar value indicating the cost of the current input Matrix. Most of the optimizers will try to minimise this cost. Note that the cost must be a scalar.
fmincon() is a good place to start, once you are used to the toolbox you and if you can you should choose a more specific optimization algorithm for your problem.
To optimize a matrix rather than a vector, reshape the matrix to a vector, pass this vector to your objective function, and then reshape it back to the matrix within your objective function.
For example say you are trying to optimize the 3 x 3 matrix M. You have defined objective function MyObjectiveFunction(InputVector). Pass M as a vector:
MyObjectiveFunction(M(:));
And within the MyObjectiveFunction you must reshape M (if necessary) to be a matrix again:
function cost = MyObjectiveFunction(InputVector)
InputMatrix = reshape(InputVector, [3 3]);
%Code that performs matrix operations on InputMatrix to produce a scalar cost
cost = %some scalar value
end