What are the scopes of GIN bindings? - gwt

I wonder what scopes folowing two bindings have:
bind(PermissionManager.class).in(Singleton.class);
and
bind(PermissionManager.class);
I have read the JavaDocs, they are as following. For Singleton:
/**
* Apply this to implementation classes when you want only one instance
* (per {#link Injector}) to be reused for all injections for that binding.
*
* #author crazybob#google.com (Bob Lee)
*/
For no scope:
/**
* No scope; the same as not applying any scope at all. Each time the
* Injector obtains an instance of an object with "no scope", it injects this
* instance then immediately forgets it. When the next request for the same
* binding arrives it will need to obtain the instance over again.
*
* <p>This exists only in case a class has been annotated with a scope
* annotation such as {#link Singleton #Singleton}, and you need to override
* this to "no scope" in your binding.
*
* #since 2.0
*/
What does this mean in practical terms? Are singletons per client or per JVM? For no scope, is every instance different?

In practical terms for Gin, the Singleton scope makes the most sense when considered per client instance, or even more accurately, per Ginjector instance. If you make the mistake of making two Ginjectors by GWT.createing an instance twice, you likely will have one 'singleton' per instance, since each Ginjector can only keep track of the instances it manages.
So each time your application loads, it will have its own singleton. If the user opens the same application twice in two different tabs, each will have its own singleton. You could consider each tab to be its own JVM, as it will have its own copy of all of the classes, and won't be able communicate, or call methods* on the other window.
For no scope, yes, by default each instance is different. When a type is #Injected, it will be a new instance there, but if you #Inject a Provider for a field, every time you call get() you can get a fresh instance. This can be helpful to get several newly injected instances easily.
Singletons make sense to use in two main cases
When the instance holds shared state that needs to be common across many injections - the most common case.
When the instance is expensive to create - on the server this is often done as a pool, so no more than X objects are created, but the expensive objects on the client tend to be views, with lots of widgets, and generally more than one is not required.
* It is possible to call methods on another window, but you need to use the browser's capabilities for this, by posting a message, not by just passing an object back and forth.

Singletons are only created once by the top level Ginjector that you create (and for most applications, you only ever create one Ginjector).
Unscoped objects are created every time they are injected as a dependency into another object. So every instance will be different. You actually don't need to write bind(SomeClass.class) if you are not going to scope it (or do any of the other things that the binder DSL can let you do to a binding). Simply having the default constructor or adding #Inject to a constructor will let Gin be able to create it.
Generally, when you are using Guice or Gin you want to leave things unscoped unless you have a good reason not to. I would recommend reading over the Guice documentation about scopes.

Related

Using Zenject to inject an implementation with interfaces

I'm trying to use Zenject in Unity. I have an interface and several implementations of it.
I want to inject with ID but also that the implementation will have the tick interface since it's not a MonoBehaviour.
So I have an IAttacker interface and a MeleeAttackImpl implementation.
Container.Bind<IAttacker>().WithId(AttackerTypeEnum.MELEEE).To<MeleeAttackImpl>().AsTransient();
I want to add
Container.BindInterfacesTo<MeleeAttackImpl>().AsTransient();
But it creates 2 different objects instead of instances that have the Tick interface and bind them to IAttacker.
If you want to bind an interface to a determined implementation, why do you use two bindings?
If you want only one instance of the object I would try:
Container.BindInterfacesAndSelfTo<MeleeAttackImpl>().AsSingle();
or:
Container.Bind<IAttacker>().To<MeleeAttackImpl>().AsSingle();
As Single() In the case you need the same instance provided from the container along the app (like a singleton).
From the documentation:
"AsTransient - Will not re-use the instance at all. Every time ContractType is requested, the DiContainer will execute the given construction method again."
Many times intance is created in the binding itself. So maybe from the two binding two instances are created, one from each binding.
In case you need to create instances dynamically with all their dependencies resolved, what you need a is Factory.

Scala: Making singleton to process a client request

Is it a good practice to make use of singleton object to process client requests?
As object instance is singleton, and if its in middle of processing a client request , and meanwhile another request arrives then same instance is invoked with new client data. Won't it make things messy?
When using singleton objects we must ensure everything inside it as well as everything it calls must be thread-safe. For example, javax.crypto.Cipher does not seem to be thread-safe, so it should probably not be called from a singleton. Consider how guice uses #Singleton to specify threadsafety intention:
#Singleton
public class InMemoryTransactionLog implements TransactionLog {
/* everything here should be threadsafe! */
}
Also consider the example of Play Framework which starting version 2.4 began moving away from singleton controllers and started encouraging class controllers.
It depends on whether the object holds any mutable data or not.
If the object is just a holder for pure functions and immutable state, it does not matter how many threads are using it at the same time because they can't affect each other via shared state.
If the object has mutable state then things can definitely go wrong if you access it from multiple threads without some kind of locking, either inside the object or externally.
So it is good practice as long as there is no mutable state. It is a good way of collecting related methods under the same namespace, or for creating a global function (by defining an apply method).

How do I register a binding with both delayed instantiation and as a singleton

I am new to scaldi. I have a class being used in my cloud environment configuration where I want two things to happen.
bind [EnvironmentInfo] to new EnvironmentInfo initWith(_.init())
First, I want it to be a singleton. It retrieves the runtime information (Google AppEngine in this case) and it should do this once on instantiation. It seems like initWith is a good choice.
Next, I want instantiation to be delayed until first request. Following the execution path it is being instantiated well before the first call.
If I can get delayed instantiation, then initWith should move to the class constructor.
My answer ended up being simple. I abstracted the singleton "state" and accessed it as a 'lazy val ...'.

What does kernel.Bind<SomeType>().ToSelf() do?

I understand the following Ninject registration:
kernel.Bind<ISomeType>().To<SomeTypeImplementation>();
which tells Ninect to fulfill requests for ISomeType by using SomeTypeImplementation.
However I'm not sure what the following is good for.
kernel.Bind<ApplicationDbContext>().ToSelf();
Which was suggested that I use from this question:
What ninject binding should I use?
It makes ApplicationDbContext "self-bindable". If you don't have an interface to bind to, you can bind to the class itself. It's more useful if you add a scope to the call such as:
kernel.Bind<ApplicationDbContext>().ToSelf().InRequestScope();
Any time it sees the ApplicationDbContext that needs to be injected, it will reuse the same object as long as it is in the same HTTP request.
The default scope is transient, which means that any time a class requests ApplicationDbContext it will create a new instance of it. This can be problematic if you have two classes that both need to use the context in the same transaction. That is why you will often see it done with InRequestScope().
By self-binding a type, you enable that type for the following:
Lifecycle Management by the container.
Enable the container to inject dependencies into other types that depend on the self-bound type, and inject dependencies of this type into its instances likewise.
Very useful if you just have one single implementation or you don't need to use abstractions for some reason.

ServiceContainer, IoC, and disposable objects

I have a question, and I'm going to tag this subjective since that's what I think it evolves into, more of a discussion. I'm hoping for some good ideas or some thought-provokers. I apologize for the long-winded question but you need to know the context.
The question is basically:
How do you deal with concrete types in relation to IoC containers? Specifically, who is responsible for disposing them, if they require disposal, and how does that knowledge get propagated out to the calling code?
Do you require them to be IDisposable? If not, is that code future-proof, or is the rule that you cannot use disposable objects? If you enforce IDisposable-requirements on interfaces and concrete types to be future-proof, whose responsibility is objects injected as part of constructor calls?
Edit: I accepted the answer by #Chris Ballard since it's the closest one to the approach we ended up with.
Basically, we always return a type that looks like this:
public interface IService<T> : IDisposable
where T: class
{
T Instance { get; }
Boolean Success { get; }
String FailureMessage { get; } // in case Success=false
}
We then return an object implementing this interface back from both .Resolve and .TryResolve, so that what we get in the calling code is always the same type.
Now, the object implementing this interface, IService<T> is IDisposable, and should always be disposed of. It's not up to the programmer that resolves a service to decide whether the IService<T> object should be disposed or not.
However, and this is the crucial part, whether the service instance should be disposed or not, that knowledge is baked into the object implementing IService<T>, so if it's a factory-scoped service (ie. each call to Resolve ends up with a new service instance), then the service instance will be disposed when the IService<T> object is disposed.
This also made it possible to support other special scopes, like pooling. We can now say that we want minimum 2 service instances, maximum 15, and typically 5, which means that each call to .Resolve will either retrieve a service instance from a pool of available objects, or construct a new one. And then, when the IService<T> object that holds the pooled service is disposed of, the service instance is released back into its pool.
Sure, this made all code look like this:
using (var service = ServiceContainer.Global.Resolve<ISomeService>())
{
service.Instance.DoSomething();
}
but it's a clean approach, and it has the same syntax regardless of the type of service or concrete object in use, so we chose that as an acceptable solution.
Original question follows, for posterity
Long-winded question comes here:
We have a IoC container that we use, and recently we discovered what amounts to a problem.
In non-IoC code, when we wanted to use, say, a file, we used a class like this:
using (Stream stream = new FileStream(...))
{
...
}
There was no question as to whether this class was something that held a limited resource or not, since we knew that files had to be closed, and the class itself implemented IDisposable. The rule is simply that every class we construct an object of, that implements IDisposable, has to be disposed of. No questions asked. It's not up to the user of this class to decide if calling Dispose is optional or not.
Ok, so on to the first step towards the IoC container. Let's assume we don't want the code to talk directly to the file, but instead go through one layer of indirection. Let's call this class a BinaryDataProvider for this example. Internally, the class is using a stream, which is still a disposable object, so the above code would be changed to:
using (BinaryDataProvider provider = new BinaryDataProvider(...))
{
...
}
This doesn't change much. The knowledge that the class implements IDisposable is still here, no questions asked, we need to call Dispose.
But, let's assume that we have classes that provide data that right now doesn't use any such limited resources.
The above code could then be written as:
BinaryDataProvider provider = new BinaryDataProvider();
...
OK, so far so good, but here comes the meat of the question. Let's assume we want to use an IoC container to inject this provider instead of depending on a specific concrete type.
The code would then be:
IBinaryDataProvider provider =
ServiceContainer.Global.Resolve<IBinaryDataProvider>();
...
Note that I assume there is an independent interface available that we can access the object through.
With the above change, what if we later on want to use an object that really should be disposed of? None of the existing code that resolves that interface is written to dispose of the object, so what now?
The way we see it, we have to pick one solution:
Implement runtime checking that checks that if a concrete type that is being registered implements IDisposable, require that the interface it is exposed through also implements IDisposable. This is not a good solution
Enfore a constraint on the interfaces being used, they must always inherit from IDisposable, in order to be future-proof
Enforce runtime that no concrete types can be IDisposable, since this is specifically not handled by the code using the IoC container
Just leave it up to the programmer to check if the object implements IDisposable and "do the right thing"?
Are there others?
Also, what about injecting objects in constructors? Our container, and some of the other containers we've looked into, is capable of injecting a fresh object into a parameter to a constructor of a concrete type. For instance, if our BinaryDataProvider need an object that implements the ILogging interface, if we enforce IDispose-"ability" on these objects, whose responsibility is it to dispose of the logging object?
What do you think? I want opinions, good and bad.
One option might be to go with a factory pattern, so that the objects created directly by the IoC container never need to be disposed themselves, eg
IBinaryDataProviderFactory factory =
ServiceContainer.Global.Resolve<IBinaryDataProviderFactory>();
using(IBinaryDataProvider provider = factory.CreateProvider())
{
...
}
Downside is added complexity, but it does mean that the container never creates anything which the developer is supposed to dispose of - it is always explicit code which does this.
If you really want to make it obvious, the factory method could be named something like CreateDisposableProvider().
(Disclaimer: I'm answering this based on java stuff. Although I program C# I haven't proxied anything in C# but I know it's possible. Sorry about the java terminology)
You could let the IoC framework inspect the object being constructed to see if it supports
IDisposable. If not, you could use a dynamic proxy to wrap the actual object that the IoC framework provides to the client code. This dynamic proxy could implement IDisposable, so that you'd always deliver a IDisposable to the client. As long as you're working with interfaces that should be fairly simple ?
Then you'd just have the problem of communicating to the developer when the object is an IDisposable. I'm not really sure how this'd be done in a nice manner.
You actually came up with a very dirty solution: your IService contract violates the SRP, wich is a big no-no.
What I recommend is to distinguish so-called "singleton" services from so-called "prototype" services. Lifetime of "singleton" ones is managed by the container, which may query at runtime whether a particular instance implements IDisposable and invoke Dispose() on shutdown if so.
Managing prototypes, on the other hand, is totally the responsibility of the calling code.