Distance to nearest palindrome - palindrome

I'd like an algorithm to provide some kind of measure of how symmetrical a string is.In looking through previous questions, I found one on finding the number of letters that need to be added to a string to turn it into a palindrome. This is close to what I'm looking for but too restrictive in the set of allowable editing operations.
My motivation for this is that I'd like to make an improved version of a video that I put on Youtube called "Numbers are Colorful" The video shows Golden Ratio bases and a couple other related systems using irrational bases. Surprisingly, one system is to begin with completely symmetrical. but the others exhibit partial symmetry which I would like to highlight.

Are you looking for repetition or symmetry? So far I have seen no example that points to symmetry only repetition. 1001010.0010101 is not symmetrical. They are related by a circular shift, i.e. take the first set of digits [1001010], shift it to the left by 1 [0010101] and now you have the right side.
Unless you make it clear what you are trying to identify, this question is too poorly defined to give a sensible answer. If you really mean symmetrical, show me an example of symmetry. You might as well mean "I can see some interesting pattern here" which is so poorly defined it's difficult to quantify.
That said, digital signal processing is the sort of area you might look into for identifying interesting patterns. For example, if you are looking for repetition then I suggest you attempt to use an algorithm designed for detecting repeating patterns.
Consider the digits in your number to be an input signal. Perform frequency analysis on this signal to detect repeating sections of numbers. If you have a strong repeating component in your series of digits this should relate to a strong frequency component in your analysis. You can measure the strength of this pattern from identifying the fundamental frequency by performing the Fourier transform, and summing all of the harmonics for the most significant frequency bin. Divide this by the total energy of the signal and this will give you a measure between 0 and 1 for how "repetitive" the signal is, and will also identify the periodicity of the signal. You may be better off using time-domain algorithms like Autocorrelation, AMDF, or the YIN estimator. (Particularly AMDF)
A similar approach can be adopted if you were to consider actual symmetry (i.e. the numbers are still very similar when you reverse them).Take your input number, create a new signal by reversing it, and then measure their "sameness" at each discrete phase. If you have a digit of length N you could consider padding it with 0's to the length 2N before performing the comparison of the signal with it's inverted self, to consider the possibility of digits lying outside the length of the number.
The time-domain techniques are more likely to work because they are not affected so much by discontinuities. They do literally compare "sameness" of a signal by either computing the difference of all the points at each phase or multiplying the numbers together at each phase. In the subtraction case you hope to get to 0 when they are similar. In the multiplication case you hope to get a peak in the function when the numbers are back in phase. They are however more prone to noise (which in this context means the numbers which aren't quite right).

Related

Automatically truncating a curve to discard outliers in matlab

I am generation some data whose plots are as shown below
In all the plots i get some outliers at the beginning and at the end. Currently i am truncating the first and the last 10 values. Is there a better way to handle this?
I am basically trying to automatically identify the two points shown below.
This is a fairly general problem with lots of approaches, usually you will use some a priori knowledge of the underlying system to make it tractable.
So for instance if you expect to see the pattern above - a fast drop, a linear section (up or down) and a fast rise - you could try taking the derivative of the curve and looking for large values and/or sign reversals. Perhaps it would help to bin the data first.
If your pattern is not so easy to define but you are expecting a linear trend you might fit the data to an appropriate class of curve using fit and then detect outliers as those whose error from the fit exceeds a given threshold.
In either case you still have to choose thresholds - mean, variance and higher order moments can help here but you would probably have to analyse existing data (your training set) to determine the values empirically.
And perhaps, after all that, as Shai points out, you may find that lopping off the first and last ten points gives the best results for the time you spent (cf. Pareto principle).

What's the best way to calculate a numerical derivative in MATLAB?

(Note: This is intended to be a community Wiki.)
Suppose I have a set of points xi = {x0,x1,x2,...xn} and corresponding function values fi = f(xi) = {f0,f1,f2,...,fn}, where f(x) is, in general, an unknown function. (In some situations, we might know f(x) ahead of time, but we want to do this generally, since we often don't know f(x) in advance.) What's a good way to approximate the derivative of f(x) at each point xi? That is, how can I estimate values of dfi == d/dx fi == df(xi)/dx at each of the points xi?
Unfortunately, MATLAB doesn't have a very good general-purpose, numerical differentiation routine. Part of the reason for this is probably because choosing a good routine can be difficult!
So what kinds of methods are there? What routines exist? How can we choose a good routine for a particular problem?
There are several considerations when choosing how to differentiate in MATLAB:
Do you have a symbolic function or a set of points?
Is your grid evenly or unevenly spaced?
Is your domain periodic? Can you assume periodic boundary conditions?
What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
Does it matter to you that your derivative is evaluated on the same points as your function is defined?
Do you need to calculate multiple orders of derivatives?
What's the best way to proceed?
These are just some quick-and-dirty suggestions. Hopefully somebody will find them helpful!
1. Do you have a symbolic function or a set of points?
If you have a symbolic function, you may be able to calculate the derivative analytically. (Chances are, you would have done this if it were that easy, and you would not be here looking for alternatives.)
If you have a symbolic function and cannot calculate the derivative analytically, you can always evaluate the function on a set of points, and use some other method listed on this page to evaluate the derivative.
In most cases, you have a set of points (xi,fi), and will have to use one of the following methods....
2. Is your grid evenly or unevenly spaced?
If your grid is evenly spaced, you probably will want to use a finite difference scheme (see either of the Wikipedia articles here or here), unless you are using periodic boundary conditions (see below). Here is a decent introduction to finite difference methods in the context of solving ordinary differential equations on a grid (see especially slides 9-14). These methods are generally computationally efficient, simple to implement, and the error of the method can be simply estimated as the truncation error of the Taylor expansions used to derive it.
If your grid is unevenly spaced, you can still use a finite difference scheme, but the expressions are more difficult and the accuracy varies very strongly with how uniform your grid is. If your grid is very non-uniform, you will probably need to use large stencil sizes (more neighboring points) to calculate the derivative at a given point. People often construct an interpolating polynomial (often the Lagrange polynomial) and differentiate that polynomial to compute the derivative. See for instance, this StackExchange question. It is often difficult to estimate the error using these methods (although some have attempted to do so: here and here). Fornberg's method is often very useful in these cases....
Care must be taken at the boundaries of your domain because the stencil often involves points that are outside the domain. Some people introduce "ghost points" or combine boundary conditions with derivatives of different orders to eliminate these "ghost points" and simplify the stencil. Another approach is to use right- or left-sided finite difference methods.
Here's an excellent "cheat sheet" of finite difference methods, including centered, right- and left-sided schemes of low orders. I keep a printout of this near my workstation because I find it so useful.
3. Is your domain periodic? Can you assume periodic boundary conditions?
If your domain is periodic, you can compute derivatives to a very high order accuracy using Fourier spectral methods. This technique sacrifices performance somewhat to gain high accuracy. In fact, if you are using N points, your estimate of the derivative is approximately N^th order accurate. For more information, see (for example) this WikiBook.
Fourier methods often use the Fast Fourier Transform (FFT) algorithm to achieve roughly O(N log(N)) performance, rather than the O(N^2) algorithm that a naively-implemented discrete Fourier transform (DFT) might employ.
If your function and domain are not periodic, you should not use the Fourier spectral method. If you attempt to use it with a function that is not periodic, you will get large errors and undesirable "ringing" phenomena.
Computing derivatives of any order requires 1) a transform from grid-space to spectral space (O(N log(N))), 2) multiplication of the Fourier coefficients by their spectral wavenumbers (O(N)), and 2) an inverse transform from spectral space to grid space (again O(N log(N))).
Care must be taken when multiplying the Fourier coefficients by their spectral wavenumbers. Every implementation of the FFT algorithm seems to have its own ordering of the spectral modes and normalization parameters. See, for instance, the answer to this question on the Math StackExchange, for notes about doing this in MATLAB.
4. What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
For many purposes, a 1st or 2nd order finite difference scheme may be sufficient. For higher precision, you can use higher order Taylor expansions, dropping higher-order terms.
If you need to compute the derivatives within a given tolerance, you may want to look around for a high-order scheme that has the error you need.
Often, the best way to reduce error is reducing the grid spacing in a finite difference scheme, but this is not always possible.
Be aware that higher-order finite difference schemes almost always require larger stencil sizes (more neighboring points). This can cause issues at the boundaries. (See the discussion above about ghost points.)
5. Does it matter to you that your derivative is evaluated on the same points as your function is defined?
MATLAB provides the diff function to compute differences between adjacent array elements. This can be used to calculate approximate derivatives via a first-order forward-differencing (or forward finite difference) scheme, but the estimates are low-order estimates. As described in MATLAB's documentation of diff (link), if you input an array of length N, it will return an array of length N-1. When you estimate derivatives using this method on N points, you will only have estimates of the derivative at N-1 points. (Note that this can be used on uneven grids, if they are sorted in ascending order.)
In most cases, we want the derivative evaluated at all points, which means we want to use something besides the diff method.
6. Do you need to calculate multiple orders of derivatives?
One can set up a system of equations in which the grid point function values and the 1st and 2nd order derivatives at these points all depend on each other. This can be found by combining Taylor expansions at neighboring points as usual, but keeping the derivative terms rather than cancelling them out, and linking them together with those of neighboring points. These equations can be solved via linear algebra to give not just the first derivative, but the second as well (or higher orders, if set up properly). I believe these are called combined finite difference schemes, and they are often used in conjunction with compact finite difference schemes, which will be discussed next.
Compact finite difference schemes (link). In these schemes, one sets up a design matrix and calculates the derivatives at all points simultaneously via a matrix solve. They are called "compact" because they are usually designed to require fewer stencil points than ordinary finite difference schemes of comparable accuracy. Because they involve a matrix equation that links all points together, certain compact finite difference schemes are said to have "spectral-like resolution" (e.g. Lele's 1992 paper--excellent!), meaning that they mimic spectral schemes by depending on all nodal values and, because of this, they maintain accuracy at all length scales. In contrast, typical finite difference methods are only locally accurate (the derivative at point #13, for example, ordinarily doesn't depend on the function value at point #200).
A current area of research is how best to solve for multiple derivatives in a compact stencil. The results of such research, combined, compact finite difference methods, are powerful and widely applicable, though many researchers tend to tune them for particular needs (performance, accuracy, stability, or a particular field of research such as fluid dynamics).
Ready-to-Go Routines
As described above, one can use the diff function (link to documentation) to compute rough derivatives between adjacent array elements.
MATLAB's gradient routine (link to documentation) is a great option for many purposes. It implements a second-order, central difference scheme. It has the advantages of computing derivatives in multiple dimensions and supporting arbitrary grid spacing. (Thanks to #thewaywewalk for pointing out this glaring omission!)
I used Fornberg's method (see above) to develop a small routine (nderiv_fornberg) to calculate finite differences in one dimension for arbitrary grid spacings. I find it easy to use. It uses sided stencils of 6 points at the boundaries and a centered, 5-point stencil in the interior. It is available at the MATLAB File Exchange here.
Conclusion
The field of numerical differentiation is very diverse. For each method listed above, there are many variants with their own set of advantages and disadvantages. This post is hardly a complete treatment of numerical differentiation.
Every application is different. Hopefully this post gives the interested reader an organized list of considerations and resources for choosing a method that suits their own needs.
This community wiki could be improved with code snippets and examples particular to MATLAB.
I believe there is more in to these particular questions. So I have elaborated on the subject further as follows:
(4) Q: What level of accuracy are you looking for? Do you need to compute the derivatives within a given tolerance?
A: The accuracy of numerical differentiation is subjective to the application of interest. Usually the way it works is, if you are using the ND in forward problem to approximate the derivatives to estimate features from signal of interest, then you should be aware of noise perturbations. Usually such artifacts contain high frequency components and by the definition of the differentiator, the noise effect will be amplified in the magnitude order of $i\omega^n$. So, increasing the accuracy of differentiator (increasing the polynomial accuracy) will no help at all. In this case you should be able to cancelt the effect of noise for differentiation. This can be done in casecade order: first smooth the signal, and then differentiate. But a better way of doing this is to use "Lowpass Differentiator". A good example of MATLAB library can be found here.
However, if this is not the case and you're using ND in inverse problems, such as solvign PDEs, then the global accuracy of differentiator is very important. Depending on what kind of bounady condition (BC) suits your problem, the design will be adapted accordingly. The rule of thump is to increase the numerical accuracy known is the fullband differentiator. You need to design a derivative matrix that takes care of suitable BC. You can find comprehensive solutions to such designs using the above link.
(5) Does it matter to you that your derivative is evaluated on the same points as your function is defined?
A: Yes absolutely. The evaluation of the ND on the same grid points is called "centralized" and off the points "staggered" schemes. Note that using odd order of derivatives, centralized ND will deviate the accuracy of frequency response of the differentiator. Therefore, if you're using such design in inverse problems, this will perturb your approximation. Also, the opposite applies to the case of even order of differentiation utilized by staggered schemes. You can find comprehensive explanation on this subject using the link above.
(6) Do you need to calculate multiple orders of derivatives?
This totally depends on your application at hand. You can refer to the same link I have provided and take care of multiple derivative designs.

Noisy signal correlation

I have two (or more) time series that I would like to correlate with one another to look for common changes e.g. both rising or both falling etc.
The problem is that the time series are all fairly noisy with relatively high standard deviations meaning it is difficult to see common features. The signals are sampled at a fairly low frequency (one point every 30s) but cover reasonable time periods 2hours +. It is often the case that the two signs are not the same length, for example 1x1hour & 1x1.5 hours.
Can anyone suggest some good correlation techniques, ideally using built in or bespoke matlab routines? I've tried auto correlation just to compare lags within a single signal but all I got back is a triangular shape with the max at 0 lag (I assume this means there is no obvious correlation except with itself?) . Cross correlation isn't much better.
Any thoughts would be greatly appreciated.
Start with a cross-covariance (xcov) instead of the cross-correlation. xcov removes the DC component (subtracts off the mean) of each data set and then does the cross-correlation. When you cross-correlate two square waves, you get a triangle wave. If you have small signals riding on a large offset, you get a triangle wave with small variations in it.
If you think there is a delay between the two signals, then I would use xcorr to calculate the delay. Since xcorr is doing an FFT of the signal, you should remove the means before calling xcorr, you may also want to consider adding a window (e.g. hanning) to reduce leakage if the data is not self-windowing.
If there is no delay between the signals or you have found and removed the delay, you could just average the two (or more) signals. The random noise should tend to average to zero and the common features will approach the true value.

How to find the "optimal" cut-off point (threshold)

I have a set of weighted features for machine learning. I'd like to reduce the feature set and just use those with a very large or very small weight.
So given below image of sorted weights, I'd only like to use the features that have weights above the higher or below the lower yellow line.
What I'm looking for is some kind of slope change detection so I can discard all the features until the first/last slope coefficient increase/decrease.
While I (think I) know how to code this myself (with first and second numerical derivatives), I'm interested in any established methods. Perhaps there's some statistic or index that computes something like that, or anything I can use from SciPy?
Edit:
At the moment, I'm using 1.8*positive.std() as positive and 1.8*negative.std() as negative threshold (fast and simple), but I'm not mathematician enough to determine how robust this is. I don't think it is, though. ⍨
If the data are (approximately) Gaussian distributed, then just using a multiple
of the standard deviation is sensible.
If you are worried about heavier tails, then you may want to base your analysis on order
statistics.
Since you've plotted it, I'll assume you're willing to sort all of the
data.
Let N be the number of data points in your sample.
Let x[i] be the i'th value in the sorted list of values.
Then 0.5( x[int( 0.8413*N)]-x[int(0.1587*N)]) is an estimate of the standard deviation
which is more robust against outliers. This estimate of the std can be used as you
indicated above. (The magic numbers above are the fraction of data that are
less than [mean+1sigma] and [mean-1sigma] respectively).
There are also conditions where just keeping the highest 10% and lowest 10% would be
sensible as well; and these cutoffs are easily computed if you have the sorted data
on hand.
These are somewhat ad hoc approaches based on the content of your question.
The general sense of what you're trying to do is (a form of) anomaly detection,
and you can probably do a better job of it if you're careful in defining/estimating
what the shape of the distribution is near the middle, so that you can tell when
the features are getting anomalous.

Process for comparing two datasets

I have two datasets at the time (in the form of vectors) and I plot them on the same axis to see how they relate with each other, and I specifically note and look for places where both graphs have a similar shape (i.e places where both have seemingly positive/negative gradient at approximately the same intervals). Example:
So far I have been working through the data graphically but realize that since the amount of the data is so large plotting each time I want to check how two sets correlate graphically it will take far too much time.
Are there any ideas, scripts or functions that might be useful in order to automize this process somewhat?
The first thing you have to think about is the nature of the criteria you want to apply to establish the similarity. There is a wide variety of ways to measure similarity and the more precisely you can describe what you want for "similar" to mean in your problem the easiest it will be to implement it regardless of the programming language.
Having said that, here is some of the thing you could look at :
correlation of the two datasets
difference of the derivative of the datasets (but I don't think it would be robust enough)
spectral analysis as mentionned by #thron of three
etc. ...
Knowing the origin of the datasets and their variability can also help a lot in formulating robust enough algorithms.
Sure. Call your two vectors A and B.
1) (Optional) Smooth your data either with a simple averaging filter (Matlab 'smooth'), or the 'filter' command. This will get rid of local changes in velocity ("gradient") that appear to be essentially noise (as in the ascending component of the red trace.
2) Differentiate both A and B. Now you are directly representing the velocity of each vector (Matlab 'diff').
3) Add the two differentiated vectors together (element-wise). Call this C.
4) Look for all points in C whose absolute value is above a certain threshold (you'll have to eyeball the data to get a good idea of what this should be). Points above this threshold indicate highly similar velocity.
5) Now look for where a high positive value in C is followed by a high negative value, or vice versa. In between these two points you will have similar curves in A and B.
Note: a) You could do the smoothing after step 3 rather than after step 1. b) Re 5), you could have a situation in which a 'hill' in your data is at the edge of the vector and so is 'cut in half', and the vectors descend to baseline before ascending in the next hill. Then 5) would misidentify the hill as coming between the initial descent and subsequent ascent. To avoid this, you could also require that the points in A and B in between the two points of velocity similarity have high absolute values.