I am currently working on an indoor navigation system using a Zigbee WSN in star topology.
I currently have signal strength data for 60 positions in an area of 15m by 10 approximately. I want to use ANN to help predict the coordinates for other positions. After going through a number of threads, I realized that normalizing the data would give me better results.
I tried that and re-trained my network a few times. I managed to get the goal parameter in the nntool of MATLAB to the value .000745, but still after I give a training sample as a test input, and then scaling it back, it is giving a value way-off.
A value of .000745 means that my data has been very closely fit, right? If yes, why this anomaly? I am dividing and multiplying by the maximum value to normalize and scale the value back respectively.
Can someone please explain me where I might be going wrong? Am I using the wrong training parameters? (I am using TRAINRP, 4 layers with 15 neurons in each layer and giving a goal of 1e-8, gradient of 1e-6 and 100000 epochs)
Should I consider methods other than ANN for this purpose?
Please help.
For spatial data you can always use Gaussian Process Regression. With a proper kernel you can predict pretty well and GP regression is a pretty simple thing to do (just matrix inversion and matrix vector multiplication) You don't have much data so exact GP regression can be easily done. For a nice source on GP Regression check this.
What did you scale? Inputs or outputs? Did scale input+output for your trainingset and only the output while testing?
What kind of error measure do you use? I assume your "goal parameter" is an error measure. Is it SSE (sum of squared errors) or MSE (mean squared errors)? 0.000745 seems to be very small and usually you should have almost no error on your training data.
Your ANN architecture might be too deep with too few hidden units for an initial test. Try different architectures like 40-20 hidden units, 60 HU, 30-20-10 HU, ...
You should generate a test set to verify your ANN's generalization. Otherwise overfitting might be a problem.
Related
Consider the training process of deep FF neural network using mini-batch gradient descent. As far as I understand, at each epoch of the training we have different random set of mini-batches. Then iterating over all mini batches and computing the gradients of the NN parameters we will get random gradients at each iteration and, therefore, random directions for the model parameters to minimize the cost function. Let's imagine we fixed the hyperparameters of the training algorithm and started the training process again and again, then we would end up with models, which completely differs from each other, because in those trainings the changes of model parameters were different.
1) Is it always the case when we use such random based training algorithms?
2) If it is so, where is the guaranty that training the NN one more time with the best hyperparameters found during the previous trainings and validations will yield us the best model again?
3) Is it possible to find such hyperparameters, which will always yield the best models?
Neural Network are solving a optimization problem, As long as it is computing a gradient in right direction but can be random, it doesn't hurt its objective to generalize over data. It can stuck in some local optima. But there are many good methods like Adam, RMSProp, momentum based etc, by which it can accomplish its objective.
Another reason, when you say mini-batch, there is at least some sample by which it can generalize over those sample, there can be fluctuation in the error rate, and but at least it can give us a local solution.
Even, at each random sampling, these mini-batch have different-2 sample, which helps in generalize well over the complete distribution.
For hyperparameter selection, you need to do tuning and validate result on unseen data, there is no straight forward method to choose these.
I am training a CNN for predicting joints on hands. The problem is that my net always converges to the mean value of the training set, and I can only get identical results for different test images. Do you know how to prevent this?
I think you must be using the MSECriterion()? It is the standard l2 (minimum square error) loss. While the CNN tries to predict results, there are multiple modes through which the result can be correct. And what l2 loss does is that it converges to an average of all these modes as that is the most feasible way it can intuitively approach to attain less-penalized results.
The MSE-based solution
appears overly smooth due to the pixel-wise average of
possible solutions in the pixel space
To pick the optimum mode of answer, you can look into adversarial loss LINK. This loss picks the optimum mode based on what it thinks is realistic in terms of the data it has seen.
For further clarification, look at figure 3 in this paper: SRGAN
I was using tensorflow. Was trying to do some regression using simple CNN with one neuron in output layer. Was optimizing mean square error:
cost = tf.reduce_mean(tf.abs(y_prediction - y_output_placeholder))
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE).minimize(cost)
My problem was I made output placeholder of true values with different shape than output predictions of the net.
placeholder's shape was [None]
predictions's shape was [None, 1].
When I changed placeholder's shape to match the one of prediction output problem was solved.
I'm using Matlab ( github code repository ). The details of the network are:
Hidden units: 100 ( variable )
Epochs : 500
Batch size: 100
The weights are being updated using Back propagation algorithm.
I've been able to recognize 0,1,2,3,4,5,6,8 which I have drawn in photoshop.
However 7,9 are not recognized, but upon running on the test set I get only 749/10000 wrong and it correctly classifies 9251/10000.
Any idea what might be wrong? Because it is learning and based on the test set results its learning correctly.
I don't see anything downright incorrect in your code, but there is a lot that can be improved:
You use this to set the initial weights:
hiddenWeights = rand(hiddenUnits,inputVectorSize);
outputWeights = rand(outputVectorSize,hiddenUnits);
hiddenWeights = hiddenWeights./size(hiddenWeights, 2);
outputWeights = outputWeights./size(outputWeights, 2);
This will make your weights very small I think. Not only that, but you will have no negative values, so you'll throw away half of the sigmoid's range of values. I suggest you try:
weights = 2*rand(x, y) - 1
Which will generate random numbers in [-1, 1]. You can then try dividing this interval to get smaller weights (try dividing by the sqrt of the size).
You use this as the output delta:
outputDelta = dactivation(outputActualInput).*(outputVector - targetVector) % (tk-yk)*f'(yin)
Multiplying by the derivative is done if you use the square loss function. For log loss (which is usually the one used in classification), you should have just outputVector - targetVector. It might not make that big of a difference, but you might want to try.
You say in the comments that the network doesn't detect your own sevens and nines. This can suggest overfitting on the MNIST data. To address this, you'll need to add some form of regularization to your network: either weight decay or dropout.
You should try different learning rates as well, if you haven't already.
You don't seem to have any bias neurons. Each layer, except the output layer, should have a neuron that only returns the value 1 to the next layer. You can implement this by adding another feature to your input data that is always 1.
MNIST is a big data set for which better algorithms are still being researched. Your networks is very basic, small, with no regularization, no bias neurons and no improvements to classic gradient descent. It's not surprising that it's not working too well: you'll likely need a more complex network for better results.
Nothing to do with neural nets or your code,
but this picture of KNN-nearest digits shows that some MNIST digits
are simply hard to recognize:
I'm relatively new to Matlab ANN Toolbox. I am training the NN with pattern recognition and target matrix of 3x8670 containing 1s and 0s, using one hidden layer, 40 neurons and the rest with default settings. When I get the simulated output for new set of inputs, then the values are around 0 and 1. I then arrange them in descending order and choose a fixed number(which is known to me) out of 8670 observations to be 1 and rest to be zero.
Every time I run the program, the first row of the simulated output always has close to 100% accuracy and the following rows dont exhibit the same kind of accuracy.
Is there a logical explanation in general? I understand that answering this query conclusively might require the understanding of program and problem, but its made of of several functions to clearly explain. Can I make some changes in the training to get consistence output?
If you have any suggestions please share it with me.
Thanks,
Nishant
Your problem statement is not clear for me. For example, what you mean by: "I then arrange them in descending order and choose a fixed number ..."
As I understand, you did not get appropriate output from your NN as compared to the real target. I mean, your output from NN is difference than target. If so, there are different possibilities which should be considered:
How do you divide training/test/validation sets for training phase? The most division should be assigned to training (around 75%) and rest for test/validation.
How is your training data set? Can it support most scenarios as you expected? If your trained data set is not somewhat similar to your test data sets (e.g., you have some new records/samples in the test data set which had not (near) appear in the training phase, it explains as 'outlier' and NN cannot work efficiently with these types of samples, so you need clustering approach not NN classification approach), your results from NN is out-of-range and NN cannot provide ideal accuracy as you need. NN is good for those data set training, where there is no very difference between training and test data sets. Otherwise, NN is not appropriate.
Sometimes you have an appropriate training data set, but the problem is training itself. In this condition, you need other types of NN, because feed-forward NNs such as MLP cannot work with compacted and not well-separated regions of data very well. You need strong function approximation such as RBF and SVM.
I'm implementing a neural network for a supervised classification task in MATLAB.
I have a training set and a test set to evaluate the results.
The problem is that every time I train the network for the same training set I get very different results (sometimes I get a 95% classification accuracy and sometimes like 60%) for the same test set.
Now I know this is because I get different initial weights and I know that I can use 'seed' to set the same initial weights but the question is what does this say about my data and what is the right way to look at this? How do I define the accuracy I'm getting using my designed ANN? Is there a protocol for this (like running the ANN 50 times and get an average accuracy or something)?
Thanks
Make sure your test set is large enough compared to the training set (e.g. 10% of the overall data) and check it regarding diversity. If your test set only covers very specific cases, this could be a reason. Also make sure you always use the same test set. Alternatively you should google the term cross-validation.
Furthermore, observing good training set accuracy while observing bad test set accuracy is a sign for overfitting. Try to apply regularization like a simple L2 weight decay (simply multiply your weight matrices with e.g. 0.999 after each weight update). Depending on your data, Dropout or L1 regularization could also help (especially if you have a lot of redundancies in your input data). Also try to choose a smaller network topology (fewer layers and/or fewer neurons per layer).
To speed up training, you could also try alternative learning algorithms like RPROP+, RPROP- or RMSProp instead of plain backpropagation.
Looks like your ANN is not converging to the optimal set of weights. Without further details of the ANN model, I cannot pinpoint the problem, but I would try increasing the number of iterations.