What is the purpose of DataService and IDataService in MVVM Light - mvvm

I'm starting to use MVVM Light version 4,and i can't understand:
Why should i use DataService and IDataService?
Should i create a dataservice for any class in model?

First of all - as usual - in MVVM you do not have to do something, it is a recommendation or best practice. In general you are free to code the data access into your view model - and to do so might be a good practice for small projects or prototypical implementations.
However, you should consider that this also has some drawbacks. The reason for implementing a data service is that this component is reusable and even might be usable in other scenarios like an MVC application. Furthermore, it separates out the concern of getting model from a data store.
The reason for implementing an IDataService is that you can exchange the implementation when you need to, e.g. for supplying design time data. When you need this, you also have to consider the inversion of control pattern that heavily relies on interfaces. In this case also a IOC container might be interesting, although not necessary.
But, first of all the above are recommendations, patterns, design guidelines, and best practices that give you the freedom to design an application that best fits your requirements.
Edit: size of the data service
The design and scope of your data service depends on your application and it's requirements. It can range from a single data service for all you models to one data service per model. Furthermore, the design of you data service interfaces may be a separate decision. One service class can implement several service interfaces, thus allowing for hiding certain aspects (methods) of the implementation from the user.
When designing a data service you should look into the unit of work and repository patterns. There are several sample implementations around.
If you just need a very simple unit of work pattern that is based on a single query you can have a look at my blog, where I wrote about turning an IQueryable into a unit of work pattern. However, this fits only very simple cases, generally a complete implementation with a repository and a proper unit of work item is more advisably.

Related

How many layers your small REST system should have?

I am building simple REST deployable using Spring Boot. Decided to create it by using failing acceptance test first followed with TDD until its green.
My module is pretty simple, I have 3 API's:
Retrieving list of data from datastore.
Adds item to datastore.
Deletes item from datastore.
I feel like it is good idea to abstract datastore and have maybe backed by Map data structure for testing purposes and use it with either NoSQL or SQL db if I want to for deployments/releases and end to end testing.
On the service layer side I am unsure since it would just delegate call to repository with no logic.
So standard approach would be controller->service->repository. In my case service does not do much(possible some exception handling but not more) and I will end up with interface and implementation as an extra as well as few more lines of code. I fell like going for controller->repository solution in my situation but it is not a practice I have seen and not sure how others would see it.
What's the best way to implement this sort of system?
I feel like it is good idea to abstract datastore
You are right. The abstraction is called 'Repository' in DDD (Domain Driven Design) for example.
On the service layer side I am unsure since it would just delegate call to repository with no logic.
I'm pretty sure there are data that you want to validate. So you should have a layer in the middle (e.g. the domain layer) which will be in charge of this validation.
Even so, if you feel like your application is simple and doesn't require such layers, go without. You will have less supple design, but more simplicity at first. Be careful: while evolving your app, you could run into trouble.
Hope this will help.
This is rather an opinion based question, but if you are asking whether a 3 layer architecture is a must, to that I say no. Be pragmatic, if you don' see a reason for a class/layer/module to exist, it does not need to exist.
A repository has a purpose (to store/retrieve), and the api layer has a purpose, to offer those things through HTTP.
Here is an article for building small services with the sparkframework: https://dzone.com/articles/building-simple-restful-api

What specific issue does the repository pattern solve?

(Note: My question has very similar concerns as the person who asked this question three months ago, but it was never answered.)
I recently started working with MVC3 + Entity Framework and I keep reading that the best practice is to use the repository pattern to centralize access to the DAL. This is also accompanied with explanations that you want to keep the DAL separate from the domain and especially the view layer. But in the examples I've seen the repository is (or appears to be) simply returning DAL entities, i.e. in my case the repository would return EF entities.
So my question is, what good is the repository if it only returns DAL entities? Doesn't this add a layer of complexity that doesn't eliminate the problem of passing DAL entities around between layers? If the repository pattern creates a "single point of entry into the DAL", how is that different from the context object? If the repository provides a mechanism to retrieve and persist DAL objects, how is that different from the context object?
Also, I read in at least one place that the Unit of Work pattern centralizes repository access in order to manage the data context object(s), but I don't grok why this is important either.
I'm 98.8% sure I'm missing something here, but from my readings I didn't see it. Of course I may just not be reading the right sources... :\
I think the term "repository" is commonly thought of in the way the "repository pattern" is described by the book Patterns of Enterprise Application Architecture by Martin Fowler.
A Repository mediates between the domain and data mapping layers,
acting like an in-memory domain object collection. Client objects
construct query specifications declaratively and submit them to
Repository for satisfaction. Objects can be added to and removed from
the Repository, as they can from a simple collection of objects, and
the mapping code encapsulated by the Repository will carry out the
appropriate operations behind the scenes.
On the surface, Entity Framework accomplishes all of this, and can be used as a simple form of a repository. However, there can be more to a repository than simply a data layer abstraction.
According to the book Domain Driven Design by Eric Evans, a repository has these advantages:
They present clients with a simple model for obtaining persistence objects and managing their life cycle
They decouple application and domain design from persistence technology, multiple database strategies, or even multiple data sources
They communicate design decisions about object access
They allow easy substitution of a dummy implementation, for unit testing (typically using an in-memory collection).
The first point roughly equates to the paragraph above, and it's easy to see that Entity Framework itself easily accomplishes it.
Some would argue that EF accomplishes the second point as well. But commonly EF is used simply to turn each database table into an EF entity, and pass it through to UI. It may be abstracting the mechanism of data access, but it's hardly abstracting away the relational data structure behind the scenes.
In simpler applications that mostly data oriented, this might not seem to be an important point. But as the applications' domain rules / business logic become more complex, you may want to be more object oriented. It's not uncommon that the relational structure of the data contains idiosyncrasies that aren't important to the business domain, but are side-effects of the data storage. In such cases, it's not enough to abstract the persistence mechanism but also the nature of the data structure itself. EF alone generally won't help you do that, but a repository layer will.
As for the third advantage, EF will do nothing (from a DDD perspective) to help. Typically DDD uses the repository not just to abstract the mechanism of data persistence, but also to provide constraints around how certain data can be accessed:
We also need no query access for persistent objects that are more
convenient to find by traversal. For example, the address of a person
could be requested from the Person object. And most important, any
object internal to an AGGREGATE is prohibited from access except by
traversal from the root.
In other words, you would not have an 'AddressRepository' just because you have an Address table in your database. If your design chooses to manage how the Address objects are accessed in this way, the PersonRepository is where you would define and enforce the design choice.
Also, a DDD repository would typically be where certain business concepts relating to sets of domain data are encapsulated. An OrderRepository may have a method called OutstandingOrdersForAccount which returns a specific subset of Orders. Or a Customer repository may contain a PreferredCustomerByPostalCode method.
Entity Framework's DataContext classes don't lend themselves well to such functionality without the added repository abstraction layer. They do work well for what DDD calls Specifications, which can be simple boolean expressions sent in to a simple method that will evaluate the data against the expression and return a match.
As for the fourth advantage, while I'm sure there are certain strategies that might let one substitute for the datacontext, wrapping it in a repository makes it dead simple.
Regarding 'Unit of Work', here's what the DDD book has to say:
Leave transaction control to the client. Although the REPOSITORY will insert into and delete from the database, it will ordinarily not
commit anything. It is tempting to commit after saving, for example,
but the client presumably has the context to correctly initiate and
commit units of work. Transaction management will be simpler if the
REPOSITORY keeps its hands off.
Entity Framework's DbContext basically resembles a Repository (and a Unit of Work as well). You don't necessarily have to abstract it away in simple scenarios.
The main advantage of the repository is that your domain can be ignorant and independent of the persistence mechanism. In a layer based architecture, the dependencies point from the UI layer down through the domain (or usually called business logic layer) to the data access layer. This means the UI depends on the BLL, which itself depends on the DAL.
In a more modern architecture (as propagated by domain-driven design and other object-oriented approaches) the domain should have no outward-pointing dependencies. This means the UI, the persistence mechanism and everything else should depend on the domain, and not the other way around.
A repository will then be represented through its interface inside the domain but have its concrete implementation outside the domain, in the persistence module. This way the domain depends only on the abstract interface, not the concrete implementation.
That basically is object-orientation versus procedural programming on an architectural level.
See also the Ports and Adapters a.k.a. Hexagonal Architecture.
Another advantage of the repository is that you can create similar access mechanisms to various data sources. Not only to databases but to cloud-based stores, external APIs, third-party applications, etc.
You're right,in those simple cases the repository is just another name for a DAO and it brings only one value: the fact that you can switch EF to another data access technique. Today you're using MSSQL, tomorrow you'll want a cloud storage. OR using a micro orm instead of EF or switching from MSSQL to MySql.
In all those cases it's good that you use a repository, as the rest of the app won't care about what storage you're using now.
There's also the limited case where you get information from multiple sources (db + file system), a repo will act as the facade, but it's still a another name for a DAO.
A 'real' repository is valid only when you're dealing with domain/business objects, for data centric apps which won't change storage, the ORM alone is enough.
It would be useful in situations where you have multiple data sources, and want to access them using a consistent coding strategy.
For example, you may have multiple EF data models, and some data accessed using traditional ADO.NET with stored procs, and some data accessed using a 3rd party API, and some accessed from an Access database living on a Windows NT4 server sitting under a blanket of dust in your broom closet.
You may not want your business or front-end layers to care about where the data is coming from, so you build a generic repository pattern to access "data", rather than to access "Entity Framework data".
In this scenario, your actual repository implementations will be different from each other, but the code that calls them wouldn't know the difference.
Given your scenario, I would simply opt for a set of interfaces that represent what data structures (your Domain Models) need to be returned from your data layer. Your implementation can then be a mixture of EF, Raw ADO.Net or any other type of Data Store/Provider. The key strategy here is that the implementation is abstracted away from the immediate consumer - your Domain layer. This is useful when you want to unit test your domain objects and, in less common situations - change your data provider / database platform altogether.
You should, if you havent already, consider using an IOC container as they make loose coupling of your solution very easy by way of Dependency Injection. There are many available, personally i prefer Ninject.
The domain layer should encapsulate all of your business logic - the rules and requirements of the problem domain, and can be consumed directly by your MVC3 web application. In certain situations it makes sense to introduce a services layer that sits above the domain layer, but this is not always necessary, and can be overkill for straightforward web applications.
Another thing to consider is that even when you know that you will be working with a single data store it still might make sense to create a repository abstraction. The reason is that there might be a function that your application needs that your ORM du jour either does badly (performance), not at all, or you just don't know how to make the ORM bend to your needs.
If you are wrapping your ORM behind a well thought out repository interface, you can easily switch between different technologies as you see fit. It's not uncommon in my repositories to see some methods use EF for their work and others to use something like PetaPoco, or (gasp) ADO.net code. The repository abstraction enables you to use exactly the right tool for the job at hand without leaking these complexities into the client code.
I think there is a big misunderstanding of what many articles call "repository." And that's why there are doubts about what real value those abstractions bring.
In my opinion the repository in it's pure form is IEnumerable, while you and many articles are talking about "data access service."
I've blogged about it here.

Is it good to return domain model from REST api over a DDD application?

If you were to have a REST layer on top of your DDD App for CRUD, would you let the REST layer spit out domain model(in terms of data)(say for a GET)?
Generally, you'd want to be able to change your domain objects (for instance when you learn something new about the domain), without having to change a public interface/API to your system. Same thing the other way around: if a change is required to a public interface, you don't want to have to change your domain model.
So from this perspective I'd never expose my domain objects as-is over a public interface. Instead I'd create data transfer objects (DTO) that are part of the public interface. This way, changes to my domain and public api can change independently.
You should not expose the DDD model. This is absolutely correct, because a SOA frontend should not expose implementation details to clients. Your users should depend on a business function, not an implementation detail… But this assumes a nice design of several, maybe heterogeneous, applications united into a SOA bus.
I would like to add to the answer because the mention of a CRUD interface makes me think that this could be a case of SOA abuse where SOA principles are used to glue the layers of an application, instead of a network of applications. SOA is meant as a way for the enterprise to communicate its systems, it is not a way to implement MVC! So simple yet so misunderstood. For example, just because your front end GUI uses services to access the backend you do not have a "SOA application."… what ever that means.
If this is a case of SOA used to glue layers, please revise your design and use an appropriate design architecture for that level of abstraction. Otherwise you will misinterpret the recommendations found here about no exposing the DDD model and not using CRUDY, and you will surely end up creating a separate domain model for the services interface, that then you will have to map to the DDD , which is so complicated that you will need to use dozer and things like that to map the same thing with different names, and so forth until we end up with a bloated un maintainable mess…
.. just be careful.
-Alex
Redzedi is so right that we need a clarification....
Like everything, this is quite more complicated to do than to say. Serializing a complex domain model could be so difficult that you can end up either not putting any logic in the domain, the anemic model antipattern (http://martinfowler.com/bliki/AnemicDomainModel.html), or having a separate anemic model for persistence, ie DTOs.
I don’t know what is worst, but both options are bad. You should put the logic that goes in the model in the model and you should be able to serialize directly everywhere.
In my experience using the domain model for many years, I believe that the best thing is a point in the middle. Yes, as Fowler and Evans state, business objects should carry logic, but not all (http://codebetter.com/gregyoung/2009/07/15/the-anemic-domain-model-pattern/) a little anemia with a nice service layer is best.
For example, an invoice should know about its items and have a procedure to calculate its total, which depends on the items. But an invoice's item does not need to know about invoicing. So what happens when an item changes in cost, should it have a pointer back to the father invoice as a circular reference and call the invoice's calculate total procedure?
I believe not. I think that's a task for the service layer who should received the event first and then orchestrate the procedure, with out having to couple all the business objects together for implementation purposes and violating the business interaction rules, which is what a domain model is for.
-Alex

Arguments against Inversion of Control containers

Seems like everyone is moving towards IoC containers. I've tried to "grok" it for a while, and as much as I don't want to be the one driver to go the wrong way on the highway, it still doesn't pass the test of common sense to me. Let me explain, and please correct/enlighten me if my arguments are flawed:
My understanding: IoC containers are supposed to make your life easier when combining different components. This is done through either a) constructor injection, b) setter injection and c) interface injection. These are then "wired up" programmatically or in a file that's read by the container. Components then get summoned by name and then cast manually whenever needed.
What I don't get:
EDIT: (Better phrasing)
Why use an opaque container that's not idiomatic to the language, when you can "wire up" the application in (imho) a much clearer way if the components were properly designed (using IoC patterns, loose-coupling)? How does this "managed code" gain non-trivial functionality? (I've heard some mentions to life-cycle management, but I don't necessarily understand how this is any better/faster than do-it-yourself.)
ORIGINAL:
Why go to all the lengths of storing the components in a container, "wiring them up" in ways that aren't idiomatic to the language, using things equivalent to "goto labels" when you call up components by name, and then losing many of the safety benefits of a statically-typed language by manual casting, when you'd get the equivalent functionality by not doing it, and instead using all the cool features of abstraction given by modern OO languages, e.g. programming to an interface? I mean, the parts that actually need to use the component at hand have to know they are using it in any case, and here you'd be doing the "wiring" using the most natural, idiomatic way - programming!
There are certainly people who think that DI Containers add no benefit, and the question is valid. If you look at it purely from an object composition angle, the benefit of a container may seem negligible. Any third party can connect loosely coupled components.
However, once you move beyond toy scenarios you should realize that the third party that connects collaborators must take on more that the simple responsibility of composition. There may also be decommissioning concerns to prevent resource leaks. As the composer is the only party that knows whether a given instance was shared or private, it must also take on the role of doing lifetime management.
When you start combining various instance scopes, using a combination of shared and private services, and perhaps even scoping some services to a particular context (such as a web request), things become complex. It's certainly possible to write all that code with poor man's DI, but it doesn't add any business value - it's pure infrastructure.
Such infrastructure code constitutes a Generic Subdomain, so it's very natural to create a reusable library to address such concerns. That's exactly what a DI Container is.
BTW, most containers I know don't use names to wire themselves - they use Auto-wiring, which combines the static information from Constructor Injection with the container's configuration of mappings from interfaces to concrete classes. In short, containers natively understand those patterns.
A DI Container is not required for DI - it's just damned helpful.
A more detailed treatment can be found in the article When to use a DI Container.
I'm sure there's a lot to be said on the subject, and hopefully I'll edit this answer to add more later (and hopefully more people will add more answers and insights), but just a couple quick points to your post...
Using an IoC container is a subset of inversion of control, not the whole thing. You can use inversion of control as a design construct without relying on an IoC container framework. At its simplest, inversion of control can be stated in this context as "supply, don't instantiate." As long as your objects aren't internally depending on implementations of other objects, and are instead requiring that instantiated implementations be supplied to them, then you're using inversion of control. Even if you're not using an IoC container framework.
To your point on programming to an interface... I'm not sure what your experience with IoC containers has been (my personal favorite is StructureMap), but you definitely program to an interface with IoC. The whole idea, at least in how I've used it, is that you separate your interfaces (your types) from your implementations (your injected classes). The code which relies on the interfaces is programmed only to those, and the implementations of those interfaces are injected when needed.
For example, you can have an IFooRepository which returns from a data store instances of type Foo. All of your code which needs those instances gets them from a supplied object of type IFooRepository. Elsewhere, you create an implementation of FooRepository and configure your IoC to supply that anywhere an IFooRepository is needed. This implementation can get them from a database, from an XML file, from an external service, etc. Doesn't matter where. That control has been inverted. Your code which uses objects of type Foo doesn't care where they come from.
The obvious benefit is that you can swap out that implementation any time you want. You can replace it with a test version, change versions based on environment, etc. But keep in mind that you also don't need to have such a 1-to-1 ratio of interfaces to implementations at any given time.
For example, I once used a code generating tool at a previous job which spit out tons and tons of DAL code into a single class. Breaking it apart would have been a pain, but what wasn't much of a pain was to configure it to spit it all out in specific method/property names. So I wrote a bunch of interfaces for my repositories and generated this one class which implemented all of them. For that generated class, it was ugly. But the rest of my application didn't care because it saw each interface as its own type. The IoC container just supplied that same class for each one.
We were able to get up and running quickly with this and nobody was waiting on the DAL development. While we continued to work in the domain code which used the interfaces, a junior dev was tasked with creating better implementations. Those implementations were later swapped in, all was well.
As I mentioned earlier, this can all be accomplished without an IoC container framework. It's the pattern itself that's important, really.
First of all what is IOC? It means that responsibility of creating the dependent object is taken away from the main object and delegated to third party framework. I always use spring as my IOC framework and it bring tons of benefit to the table.
Promotes coding to interface and decoupling - The key benefit is that IOC promotes and makes decoupling very easy. You can always inject an interface in your main object and then use the interface methods to perform tasks. The main object does not need to know which dependent object is assigned to the interface. When you want to use a different class as dependency all you need is to swap the old class with a new one in the config file without a single line of code change. Now you can argue that this can be done in the code using various interface design patterns. But IOC framework makes its walk in a park. So even as a newbie you become expert in levering various interface design patterns like bridge, factory etc.
Clean code - As most of object creation and object life-cycle operations are delegated to IOC container you saved from the writing broiler point repetitive code. So you have a cleaner, smaller and more understandable code.
Unit testing - IOC makes unit testing easy. Since you are left with decoupled code you can easily test the decoupled code in isolation. Also you can easily inject dependencies in your test cases and see how different component interacts.
Property Configurators - Almost all the applications have some properties file where they store application specific static properties. Now to access those properties developers need to write wrappers which will read and parse the properties file and store the properties in format that application can access. Now all the IOC frameworks provide a way of injecting static properties/values in specific class. So this again becomes walk in the park.
These are some of the points I can think right away I am sure there are more.

What are the pros and cons of using a Data Services Layer?

This is a discussion that seems to reappear regularly in the SOA world. I heard it as far back as '95, but it's probably been a topic of conversation long before that. I definitely have my own opinions about it, but I'd like to hear some good, solid arguments for having a Data Services Layer, and likewise for arguments against having one.
What value does it add to a systems architecture?
What are the inherent pitfalls?
What are common anti-patterns?
Links to articles are definitely acceptable.
To avoid confusion, this article describes the type of Data Service Layer I'm talking about. Essentially, a thin layer above the database that provides SOAP access to data and includes no business logic.
Data services are quite data oriented, for projects without logic always doing crud. For instance, it can suit if you have a log service or a properties service, you will just do the crud to it.
If the domain that involves that DDBB is complex, with complex logic, you will need to manage that logic up to that service (maybe in an orchestration), so you will divide the logic into several services. In that case I think is better to use a thicker unique service (DAL, BLL and SIL) that manage that domain and expose just one interface.
At the end it is another tool, depend of the problem.