I am following the quaternion tutorial: http://www.raywenderlich.com/12667/how-to-rotate-a-3d-object-using-touches-with-opengl and am trying to rotate a globe to some XYZ location. I have an initial quaternion and generate a random XYZ location on the surface of the globe. I pass that XYZ location into the following function. The idea was to generate a lookAt vector with GLKMatrix4MakeLookAt and define the end Quaternion for the slerp step from the lookAt matrix.
- (void)rotateToLocationX:(float)x andY:(float)y andZ:(float)z {
// Turn on the interpolation for smooth rotation
_slerping = YES; // Begin auto rotating to this location
_slerpCur = 0;
_slerpMax = 1.0;
_slerpStart = _quat;
// The eye location is defined by the look at location multiplied by this modifier
float modifier = 1.0;
// Create a look at vector for which we will create a GLK4Matrix from
float xEye = x;
float yEye = y;
float zEye = z;
//NSLog(#"%f %f %f %f %f %f",xEye, yEye, zEye, x, y, z);
_currentSatelliteLocation = GLKMatrix4MakeLookAt(xEye, yEye, zEye, 0, 0, 0, 0, 1, 0);
_currentSatelliteLocation = GLKMatrix4Multiply(_currentSatelliteLocation,self.effect.transform.modelviewMatrix);
// Turn our 4x4 matrix into a quat and use it to mark the end point of our interpolation
//_currentSatelliteLocation = GLKMatrix4Translate(_currentSatelliteLocation, 0.0f, 0.0f, GLOBAL_EARTH_Z_LOCATION);
_slerpEnd = GLKQuaternionMakeWithMatrix4(_currentSatelliteLocation);
// Print info on the quat
GLKVector3 vec = GLKQuaternionAxis(_slerpEnd);
float angle = GLKQuaternionAngle(_slerpEnd);
//NSLog(#"%f %f %f %f",vec.x,vec.y,vec.z,angle);
NSLog(#"Quat end:");
[self printMatrix:_currentSatelliteLocation];
//[self printMatrix:self.effect.transform.modelviewMatrix];
}
The interpolation works, I get a smooth rotation, however the ending location is never the XYZ I input - I know this because my globe is a sphere and I am calculating XYZ from Lat Lon. I want to look directly down the 'lookAt' vector toward the center of the earth from that lat/lon location on the surface of the globe after the rotation. I think it may have something to do with the up vector but I've tried everything that made sense.
What am I doing wrong - How can I define a final quaternion that when I finish rotating, looks down a vector to the XYZ on the surface of the globe? Thanks!
Is the following your meaning:
Your globe center is (0, 0, 0), radius is R, the start position is (0, 0, R), your final position is (0, R, 0), so rotate the globe 90 degrees around X-asix?
If so, just set lookat function eye position to your final position, the look at parameters to the globe center.
m_target.x = 0.0f;
m_target.y = 0.0f;
m_target.z = 1.0f;
m_right.x = 1.0f;
m_right.y = 0.0f;
m_right.z = 0.0f;
m_up.x = 0.0f;
m_up.y = 1.0f;
m_up.z = 0.0f;
void CCamera::RotateX( float amount )
{
Point3D target = m_target;
Point3D up = m_up;
amount = amount / 180 * PI;
m_target.x = (cos(PI / 2 - amount) * up.x) + (cos(amount) * target.x);
m_target.y = (cos(PI / 2 - amount) * up.y) + (cos(amount) * target.y);
m_target.z = (cos(PI / 2 - amount) * up.z) + (cos(amount) * target.z);
m_up.x = (cos(amount) * up.x) + (cos(PI / 2 + amount) * target.x);
m_up.y = (cos(amount) * up.y) + (cos(PI / 2 + amount) * target.y);
m_up.z = (cos(amount) * up.z) + (cos(PI / 2 + amount) * target.z);
Normalize(m_target);
Normalize(m_up);
}
void CCamera::RotateY( float amount )
{
Point3D target = m_target;
Point3D right = m_right;
amount = amount / 180 * PI;
m_target.x = (cos(PI / 2 + amount) * right.x) + (cos(amount) * target.x);
m_target.y = (cos(PI / 2 + amount) * right.y) + (cos(amount) * target.y);
m_target.z = (cos(PI / 2 + amount) * right.z) + (cos(amount) * target.z);
m_right.x = (cos(amount) * right.x) + (cos(PI / 2 - amount) * target.x);
m_right.y = (cos(amount) * right.y) + (cos(PI / 2 - amount) * target.y);
m_right.z = (cos(amount) * right.z) + (cos(PI / 2 - amount) * target.z);
Normalize(m_target);
Normalize(m_right);
}
void CCamera::RotateZ( float amount )
{
Point3D right = m_right;
Point3D up = m_up;
amount = amount / 180 * PI;
m_up.x = (cos(amount) * up.x) + (cos(PI / 2 - amount) * right.x);
m_up.y = (cos(amount) * up.y) + (cos(PI / 2 - amount) * right.y);
m_up.z = (cos(amount) * up.z) + (cos(PI / 2 - amount) * right.z);
m_right.x = (cos(PI / 2 + amount) * up.x) + (cos(amount) * right.x);
m_right.y = (cos(PI / 2 + amount) * up.y) + (cos(amount) * right.y);
m_right.z = (cos(PI / 2 + amount) * up.z) + (cos(amount) * right.z);
Normalize(m_right);
Normalize(m_up);
}
void CCamera::Normalize( Point3D &p )
{
float length = sqrt(p.x * p.x + p.y * p.y + p.z * p.z);
if (1 == length || 0 == length)
{
return;
}
float scaleFactor = 1.0 / length;
p.x *= scaleFactor;
p.y *= scaleFactor;
p.z *= scaleFactor;
}
The answer to this question is a combination of the following rotateTo function and a change to the code from Ray's tutorial at ( http://www.raywenderlich.com/12667/how-to-rotate-a-3d-object-using-touches-with-opengl ). As one of the comments on that article says there is an arbitrary factor of 2.0 being multiplied in GLKQuaternion Q_rot = GLKQuaternionMakeWithAngleAndVector3Axis(angle * 2.0, axis);. Remove that "2" and use the following function to create the _slerpEnd - after that the globe will rotate smoothly to XYZ specified.
// Rotate the globe using Slerp interpolation to an XYZ coordinate
- (void)rotateToLocationX:(float)x andY:(float)y andZ:(float)z {
// Turn on the interpolation for smooth rotation
_slerping = YES; // Begin auto rotating to this location
_slerpCur = 0;
_slerpMax = 1.0;
_slerpStart = _quat;
// Create a look at vector for which we will create a GLK4Matrix from
float xEye = x;
float yEye = y;
float zEye = z;
_currentSatelliteLocation = GLKMatrix4MakeLookAt(xEye, yEye, zEye, 0, 0, 0, 0, 1, 0);
// Turn our 4x4 matrix into a quat and use it to mark the end point of our interpolation
_slerpEnd = GLKQuaternionMakeWithMatrix4(_currentSatelliteLocation);
}
Hi guys I am working on a app which requires the use of opengl es. However I have some questions. My task at hand is to rotate a matrix about an arbitrary point say (0,0,0). I did some research on google and the most common approach is
translate the matrix to (0,0,0)
Rotate the matrix
Translate the matrix back to its original position
Effectively
glTranslatef(centerX, centerY, centerZ);
glRotatef(angle, 0, 0, 1);
glTranslatef(-centerX, -centerY, -centerZ);
However my problem is I am using opengl es 2.0. The function translatef does not exist in opengl es 2.0. I have a function called as translateBy but I am unable to figure out how to use translateBy function to translate my matrix to a certain point
Thanks any help would be appreciated.
In OpenGL ES 2.0 you have to use vertex shader and just update the modelview matrix in every frame using
GLint modelviewmatrix = glGetUniformLocation(m_simpleProgram, "ModelviewMatrix");
matrx4 modelviewMatrix = rotation * translation;
glUniformMatrix4fv(modelviewmatrix, 1, 0, modelviewMatrix.Pointer());
assuming matrx4 as a matrix class of 4x4. and rotation and translation are the 4x4 matrix objects for rotation and translation.
Just make your own translate and rotate functions,
Translatef(x,y,z) is equivalent to
Matrx4 Translate( x, y, z)
{
Matrx4 m;
m = { 1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
x, y, z, 1 }
return m;
}
and Rotatef(degree, vector3 axis) is equivalent to
Matrx4 Rotate( float degree, vector3 axis)
{
float radians = degrees * 3.14159f / 180.0f;
float s = std::sin(radians);
float c = std::cos(radians);
Matrx4 m = Identity(); /// load identity matrix
m[0] = c + (1 - c) * axis.x * axis.x;
m[1] = (1 - c) * axis.x * axis.y - axis.z * s;
m[2] = (1 - c) * axis.x * axis.z + axis.y * s;
m[4] = (1 - c) * axis.x * axis.y + axis.z * s;
m[5] = c + (1 - c) * axis.y * axis.y;
m[6] = (1 - c) * axis.y * axis.z - axis.x * s;
m[8] = (1 - c) * axis.x * axis.z - axis.y * s;
m[9] = (1 - c) * axis.y * axis.z + axis.x * s;
m[10] = c + (1 - c) * axis.z * axis.z;
return m;
}
Looking to do classic OpenGL mouse picking in ES. I'd prefer not to use third party libs, GLU ports and OpenGL name stacks, etc, are out. This pretty much leaves inverse view transformation and ray intersection, correct?
I've gotten pretty far with the help of:
http://trac.bookofhook.com/bookofhook/trac.cgi/wiki/MousePicking
http://eigenclass.blogspot.com/2008/10/opengl-es-picking-using-ray-boundingbox.html
. . .but I'm not there yet. This also reeks of THERE MUST BE AN EASIER WAY!!
Here is some code:
-(void)handleTouch:(CGPoint)point {
GLfloat width = backingWidth;
GLfloat height = backingHeight;
GLfloat x = point.x;
GLfloat y = point.y;
GLfloat z = 0.0f;
//viewport -> normalized dev coord -> clip
GLfloat n[] = {
2 * x / width - 1,
2 * y / height,
2 * z - 1,
1
};
float fov = 45.0f * (M_PI / 180.0f);
float near = 0.01, far = 10.0f;
float aspect = (float)backingWidth / (float)backingHeight;
float top = tan(fov) * near;
//float bottom = -top;
//float left = aspect * bottom;
float right = aspect * top;
//I'm a viewing volume symmetric projection matrix
GLfloat P[] = {
near / right, 0, 0, 0,
0, near / top, 0, 0,
0, 0, -(far + near) / (far - near), (-2 * far * near) / (far - near),
0, 0, -1, 0
};
GLfloat Pminus1[] = {
1/P[0], 0, 0, 0,
0, 1/P[5], 0, 0,
0, 0, 0, 1/P[14],
0, 0, 1/P[11], -(P[10]/ (P[11]*P[14]))
};
//clip -> view
GLfloat v[] = {
Pminus1[0] * n[0] + Pminus1[1] * n[1] + Pminus1[2] * n[2] + Pminus1[3] * n[3],
Pminus1[4] * n[0] + Pminus1[5] * n[1] + Pminus1[6] * n[2] + Pminus1[7] * n[3],
Pminus1[8] * n[0] + Pminus1[9] * n[1] + Pminus1[10] * n[2] + Pminus1[11] * n[3],
Pminus1[12] * n[0] + Pminus1[13] * n[1] + Pminus1[14] * n[2] + Pminus1[15] * n[3]
};
//view -> world
GLfloat Rt[] = {
mv[0], mv[4], mv[8],
mv[1], mv[5], mv[9],
mv[2], mv[6], mv[10]
};
GLfloat tPrime[] = {
Rt[0] * mv[3] + Rt[1] * mv[7] + Rt[2] * mv[11],
Rt[3] * mv[3] + Rt[4] * mv[7] + Rt[5] * mv[11],
Rt[6] * mv[3] + Rt[7] * mv[7] + Rt[8] * mv[11]
};
GLfloat Mminus1[] = {
Rt[0], Rt[1], Rt[2], -(tPrime[0]),
Rt[3], Rt[4], Rt[5], -(tPrime[1]),
Rt[6], Rt[7], Rt[8], -(tPrime[2]),
0, 0, 0, 1
};
//point in world space
GLfloat w[] = {
Mminus1[0] * v[0] + Mminus1[1] * v[1] + Mminus1[2] * v[2] + Mminus1[3] * v[3],
Mminus1[4] * v[0] + Mminus1[5] * v[1] + Mminus1[6] * v[2] + Mminus1[7] * v[3],
Mminus1[8] * v[0] + Mminus1[9] * v[1] + Mminus1[10] * v[2] + Mminus1[11] * v[3],
Mminus1[12] * v[0] + Mminus1[13] * v[1] + Mminus1[14] * v[2] + Mminus1[15] * v[3]
};
//r = a + t(w - a)
GLfloat a[] = {0.0f, -0.1f, 0.0f};
GLfloat wminusa[] = {w[0] - a[0], w[1] - a[1], w[2] - a[2]};
vector[0] = a[0];
vector[1] = a[1],
vector[2] = a[2];
vector[3] = w[0];
vector[4] = w[1];
vector[5] = -10.0f;
//3 non-colinear points on the plane
GLfloat p1[] = {rect.origin.x, rect.origin.y, 0};
GLfloat p2[] = {rect.origin.x + rect.size.width, rect.origin.y, 0};
GLfloat p3[] = {rect.origin.x + rect.size.width, rect.origin.y + rect.size.height, 0};
//location plane normal vector, Ax + By + Cz + D = 0
GLfloat lp[] = {
p1[1] * (p2[2] - p3[2]) + p2[1] * (p3[2] - p1[2]) + p3[1] * (p1[2] - p2[2]),
p1[2] * (p2[0] - p3[0]) + p2[2] * (p3[0] - p1[0]) + p3[2] * (p1[0] - p2[0]),
p1[0] * (p2[1] - p3[1]) + p2[0] * (p3[1] - p1[1]) + p3[0] * (p1[1] - p2[1]),
-(p1[0] * (((p2[1] * p3[2]) - (p3[1] * p2[2]))) + p2[0] * (((p3[1] * p1[2]) - (p1[1] * p3[2]))) + p3[0] * (((p1[1] * p2[2]) - (p2[1] * p1[2]))))
};
GLfloat PnRd = (lp[0] * wminusa[0]) + (lp[1] * wminusa[1]) + (lp[2] * wminusa[2]);
if(PnRd != 0) {
GLfloat PnR0D = -((lp[0] * a[0]) + (lp[1] * a[1]) + (lp[2] * a[2]) + lp[3]);
if(PnR0D != 0) {
GLfloat t = PnR0D / PnRd;
if(t >= 0) {
GLfloat p[] = {
a[0] + wminusa[0] * t,
a[1] + wminusa[1] * t,
a[2] + wminusa[2] * t
};
if(p[0] > rect.origin.x &&
p[0] < rect.origin.x + rect.size.width &&
p[1] > rect.origin.y &&
p[1] < rect.origin.y + rect.size.height)
NSLog(#"BOOM!!!");
}
}
}
}
This post is very hard to follow. I'm attempting to roll my own on iOS 5 with GLKView; I've worked out how to touch detect pixel RGBA as I describe here, now I'm trying to work out how to quickly change the colours of my scene objects to be unique, to accompany this method.
I managed to fix it:
-(void)view2WorldPoint:(CGPoint)point :(GLfloat*)worldPoint {
// this is the inverse translation of the modelview
GLfloat width = (GLfloat)backingWidth;
GLfloat height = (GLfloat)backingHeight;
float clickX = point.x;
float clickY = point.y;
float clickZ = 0.0f;
NSLog(#"click point : x = %f, y = %f, z = %f", clickX, clickY, clickZ);
// NSLog(#"Me : x = %f, y = %f, z = %f", a[0], a[1], a[2]);
// NSLog(#"Dev : x = %f, y = %f, z = %f", squareX, squareY, squareZ);
//viewport -> normalized device coord -> clip
GLfloat n[] = {
2 * clickX / width - 1,
2 * (480-clickY) / height - 1,
2 * clickZ - 1,
1
};
// NSLog(#"Obj : x = %f, y = %f, z = %f", rect.origin.x, rect.origin.y, -0.5);
// NSLog(#"N : x = %f, y = %f, z = %f", n[0], n[1], n[2]);
//I'm a viewing volume symmetric projection matrix
// GLfloat P[] = {
// near / right, 0, 0, 0,
// 0, near / top, 0, 0,
// 0, 0, -(far + near) / (far - near), (-2 * far * near) / (far - near),
// 0, 0, -1, 0
// };
GLfloat P[16];
glGetFloatv(GL_PROJECTION_MATRIX, P);
// [self dumpMatrix:P :#"P"];
GLfloat Pminus1[] = {
1/P[0], 0, 0, 0,
0, 1/P[5], 0, 0,
0, 0, 0, 1/P[11],
0, 0, 1/P[14], -(P[10]/ (P[11]*P[14]))
};
// [self dumpMatrix:Pminus1 :#"P-1"];
//clip -> view
GLfloat v[] = {
(Pminus1[0] * n[0]) + (Pminus1[1] * n[1]) + (Pminus1[2] * n[2]) + (Pminus1[3] * n[3]),
(Pminus1[4] * n[0]) + (Pminus1[5] * n[1]) + (Pminus1[6] * n[2]) + (Pminus1[7] * n[3]),
(Pminus1[8] * n[0]) + (Pminus1[9] * n[1]) + (Pminus1[10] * n[2]) + (Pminus1[11] * n[3]),
(Pminus1[12] * n[0]) + (Pminus1[13] * n[1]) + (Pminus1[14] * n[2]) + (Pminus1[15] * n[3])
};
// NSLog(#"v = [%f, %f, %f, %f]", v[0], v[1], v[2], v[3]);
// [self dumpMatrix:mv :#"mv"];
//view -> world
GLfloat Rt[] = {
mv[0], mv[4], -mv[8],
mv[1], mv[5], -mv[9],
-mv[2], -mv[6], mv[10]
};
// NSLog(#"Rt0 = [%f, %f, %f]", Rt[0], Rt[1], Rt[2]);
// NSLog(#"Rt1 = [%f, %f, %f]", Rt[3], Rt[4], Rt[5]);
// NSLog(#"Rt2 = [%f, %f, %f]", Rt[6], Rt[7], Rt[8]);
GLfloat tPrime[] = {
Rt[0] * mv[12] + Rt[1] * mv[13] + Rt[2] * mv[14],
Rt[3] * mv[12] + Rt[4] * mv[13] + Rt[5] * mv[14],
Rt[6] * mv[12] + Rt[7] * mv[13] + Rt[8] * mv[14]
};
// NSLog(#"tPrime = [%f, %f, %f]", tPrime[0], tPrime[1], tPrime[2]);
GLfloat Mminus1[] = {
Rt[0], Rt[1], Rt[2], -(tPrime[0]),
Rt[3], Rt[4], Rt[5], -(tPrime[1]),
Rt[6], Rt[7], Rt[8], -(tPrime[2]),
0, 0, 0, 1
};
//point in world space
GLfloat w[] = {
Mminus1[0] * v[0] + Mminus1[1] * v[1] + Mminus1[2] * v[2] + Mminus1[3] * v[3],
Mminus1[4] * v[0] + Mminus1[5] * v[1] + Mminus1[6] * v[2] + Mminus1[7] * v[3],
Mminus1[8] * v[0] + Mminus1[9] * v[1] + Mminus1[10] * v[2] + Mminus1[11] * v[3],
Mminus1[12] * v[0] + Mminus1[13] * v[1] + Mminus1[14] * v[2] + Mminus1[15] * v[3]
};
NSLog(#"W : x = %f, y = %f, z = %f", w[0], w[1], w[2]);
worldPoint[0] = w[0];
worldPoint[1] = w[1];
worldPoint[2] = w[2];
}
Okay, okay that was still a bit buggy. Here is what is MOSTLY working now:
-(void)view2WorldPoint:(CGPoint)point :(GLfloat*)worldPoint {
float clickX = point.x;
float clickY = point.y;
float clickZ = -near;
//viewport -> normalized device coord -> clip
GLint viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
GLfloat n[] = {
(clickX - (float)viewport[0]) / (float)viewport[2] * 2.0 - 1.0,
-((clickY - (float)viewport[1]) / (float)viewport[3] * 2.0 - 1.0),
2.0 * clickZ - 1.0,
1.0
};
GLfloat MP[16], MPInv[16];
MatMatMultiply(MP, projMat, modelMat);
GenerateInverseMatrix4f(MPInv, MP); // replace this one with the whole 1/p thang?
GLfloat w[] = {
(MPInv[0] * n[0]) + (MPInv[4] * n[1]) + (MPInv[8] * n[2]) + (MPInv[12] * n[3]),
(MPInv[1] * n[0]) + (MPInv[5] * n[1]) + (MPInv[9] * n[2]) + (MPInv[13] * n[3]),
(MPInv[2] * n[0]) + (MPInv[6] * n[1]) + (MPInv[10] * n[2]) + (MPInv[14] * n[3]),
(MPInv[3] * n[0]) + (MPInv[7] * n[1]) + (MPInv[11] * n[2]) + (MPInv[15] * n[3])
};
worldPoint[0] = w[0] / w[3];
worldPoint[1] = w[1] / w[3];
worldPoint[2] = w[2] / w[3];
}
float Determinant4f(const float m[16])
{
return
m[12]*m[9]*m[6]*m[3]-
m[8]*m[13]*m[6]*m[3]-
m[12]*m[5]*m[10]*m[3]+
m[4]*m[13]*m[10]*m[3]+
m[8]*m[5]*m[14]*m[3]-
m[4]*m[9]*m[14]*m[3]-
m[12]*m[9]*m[2]*m[7]+
m[8]*m[13]*m[2]*m[7]+
m[12]*m[1]*m[10]*m[7]-
m[0]*m[13]*m[10]*m[7]-
m[8]*m[1]*m[14]*m[7]+
m[0]*m[9]*m[14]*m[7]+
m[12]*m[5]*m[2]*m[11]-
m[4]*m[13]*m[2]*m[11]-
m[12]*m[1]*m[6]*m[11]+
m[0]*m[13]*m[6]*m[11]+
m[4]*m[1]*m[14]*m[11]-
m[0]*m[5]*m[14]*m[11]-
m[8]*m[5]*m[2]*m[15]+
m[4]*m[9]*m[2]*m[15]+
m[8]*m[1]*m[6]*m[15]-
m[0]*m[9]*m[6]*m[15]-
m[4]*m[1]*m[10]*m[15]+
m[0]*m[5]*m[10]*m[15];
}
BOOL GenerateInverseMatrix4f(float i[16], const float m[16])
{
float x=Determinant4f(m);
if (x==0) return FALSE;
i[0]= (-m[13]*m[10]*m[7] +m[9]*m[14]*m[7] +m[13]*m[6]*m[11]
-m[5]*m[14]*m[11] -m[9]*m[6]*m[15] +m[5]*m[10]*m[15])/x;
i[4]= ( m[12]*m[10]*m[7] -m[8]*m[14]*m[7] -m[12]*m[6]*m[11]
+m[4]*m[14]*m[11] +m[8]*m[6]*m[15] -m[4]*m[10]*m[15])/x;
i[8]= (-m[12]*m[9]* m[7] +m[8]*m[13]*m[7] +m[12]*m[5]*m[11]
-m[4]*m[13]*m[11] -m[8]*m[5]*m[15] +m[4]*m[9]* m[15])/x;
i[12]=( m[12]*m[9]* m[6] -m[8]*m[13]*m[6] -m[12]*m[5]*m[10]
+m[4]*m[13]*m[10] +m[8]*m[5]*m[14] -m[4]*m[9]* m[14])/x;
i[1]= ( m[13]*m[10]*m[3] -m[9]*m[14]*m[3] -m[13]*m[2]*m[11]
+m[1]*m[14]*m[11] +m[9]*m[2]*m[15] -m[1]*m[10]*m[15])/x;
i[5]= (-m[12]*m[10]*m[3] +m[8]*m[14]*m[3] +m[12]*m[2]*m[11]
-m[0]*m[14]*m[11] -m[8]*m[2]*m[15] +m[0]*m[10]*m[15])/x;
i[9]= ( m[12]*m[9]* m[3] -m[8]*m[13]*m[3] -m[12]*m[1]*m[11]
+m[0]*m[13]*m[11] +m[8]*m[1]*m[15] -m[0]*m[9]* m[15])/x;
i[13]=(-m[12]*m[9]* m[2] +m[8]*m[13]*m[2] +m[12]*m[1]*m[10]
-m[0]*m[13]*m[10] -m[8]*m[1]*m[14] +m[0]*m[9]* m[14])/x;
i[2]= (-m[13]*m[6]* m[3] +m[5]*m[14]*m[3] +m[13]*m[2]*m[7]
-m[1]*m[14]*m[7] -m[5]*m[2]*m[15] +m[1]*m[6]* m[15])/x;
i[6]= ( m[12]*m[6]* m[3] -m[4]*m[14]*m[3] -m[12]*m[2]*m[7]
+m[0]*m[14]*m[7] +m[4]*m[2]*m[15] -m[0]*m[6]* m[15])/x;
i[10]=(-m[12]*m[5]* m[3] +m[4]*m[13]*m[3] +m[12]*m[1]*m[7]
-m[0]*m[13]*m[7] -m[4]*m[1]*m[15] +m[0]*m[5]* m[15])/x;
i[14]=( m[12]*m[5]* m[2] -m[4]*m[13]*m[2] -m[12]*m[1]*m[6]
+m[0]*m[13]*m[6] +m[4]*m[1]*m[14] -m[0]*m[5]* m[14])/x;
i[3]= ( m[9]* m[6]* m[3] -m[5]*m[10]*m[3] -m[9]* m[2]*m[7]
+m[1]*m[10]*m[7] +m[5]*m[2]*m[11] -m[1]*m[6]* m[11])/x;
i[7]= (-m[8]* m[6]* m[3] +m[4]*m[10]*m[3] +m[8]* m[2]*m[7]
-m[0]*m[10]*m[7] -m[4]*m[2]*m[11] +m[0]*m[6]* m[11])/x;
i[11]=( m[8]* m[5]* m[3] -m[4]*m[9]* m[3] -m[8]* m[1]*m[7]
+m[0]*m[9]* m[7] +m[4]*m[1]*m[11] -m[0]*m[5]* m[11])/x;
i[15]=(-m[8]* m[5]* m[2] +m[4]*m[9]* m[2] +m[8]* m[1]*m[6]
-m[0]*m[9]* m[6] -m[4]*m[1]*m[10] +m[0]*m[5]* m[10])/x;
return TRUE;
}
void MatMatMultiply(GLfloat *result, GLfloat *matrix1, GLfloat *matrix2)
{
result[0]=matrix1[0]*matrix2[0]+
matrix1[4]*matrix2[1]+
matrix1[8]*matrix2[2]+
matrix1[12]*matrix2[3];
result[4]=matrix1[0]*matrix2[4]+
matrix1[4]*matrix2[5]+
matrix1[8]*matrix2[6]+
matrix1[12]*matrix2[7];
result[8]=matrix1[0]*matrix2[8]+
matrix1[4]*matrix2[9]+
matrix1[8]*matrix2[10]+
matrix1[12]*matrix2[11];
result[12]=matrix1[0]*matrix2[12]+
matrix1[4]*matrix2[13]+
matrix1[8]*matrix2[14]+
matrix1[12]*matrix2[15];
result[1]=matrix1[1]*matrix2[0]+
matrix1[5]*matrix2[1]+
matrix1[9]*matrix2[2]+
matrix1[13]*matrix2[3];
result[5]=matrix1[1]*matrix2[4]+
matrix1[5]*matrix2[5]+
matrix1[9]*matrix2[6]+
matrix1[13]*matrix2[7];
result[9]=matrix1[1]*matrix2[8]+
matrix1[5]*matrix2[9]+
matrix1[9]*matrix2[10]+
matrix1[13]*matrix2[11];
result[13]=matrix1[1]*matrix2[12]+
matrix1[5]*matrix2[13]+
matrix1[9]*matrix2[14]+
matrix1[13]*matrix2[15];
result[2]=matrix1[2]*matrix2[0]+
matrix1[6]*matrix2[1]+
matrix1[10]*matrix2[2]+
matrix1[14]*matrix2[3];
result[6]=matrix1[2]*matrix2[4]+
matrix1[6]*matrix2[5]+
matrix1[10]*matrix2[6]+
matrix1[14]*matrix2[7];
result[10]=matrix1[2]*matrix2[8]+
matrix1[6]*matrix2[9]+
matrix1[10]*matrix2[10]+
matrix1[14]*matrix2[11];
result[14]=matrix1[2]*matrix2[12]+
matrix1[6]*matrix2[13]+
matrix1[10]*matrix2[14]+
matrix1[14]*matrix2[15];
result[3]=matrix1[3]*matrix2[0]+
matrix1[7]*matrix2[1]+
matrix1[11]*matrix2[2]+
matrix1[15]*matrix2[3];
result[7]=matrix1[3]*matrix2[4]+
matrix1[7]*matrix2[5]+
matrix1[11]*matrix2[6]+
matrix1[15]*matrix2[7];
result[11]=matrix1[3]*matrix2[8]+
matrix1[7]*matrix2[9]+
matrix1[11]*matrix2[10]+
matrix1[15]*matrix2[11];
result[15]=matrix1[3]*matrix2[12]+
matrix1[7]*matrix2[13]+
matrix1[11]*matrix2[14]+
matrix1[15]*matrix2[15];
}