Scheduling policies in Linux Kernel - operating-system

Can there be more than two scheduling policies working at the same time in Linux Kernel ?
Can FIFO and Round Robin be working on the same machine ?

Yes, Linux supports no less then 4 different scheduling methods for tasks: SCHED_BATCH, SCHED_FAIR, SCHED_FIFO and SCHED_RR.
Regardless of scheduling method, all tasks also have a fixed hard priority (which is 0 for batch and fair and from 1- 99 for the RT schedulign methods of FIFO and RR). Tasks are first and foremost picked by priority - the highest priority wins.
However, with several tasks available for running with the same priority, that is where the scheduling method kicks in: A fair task will only run for its allotted weighted (with the weight coming from a soft priority called the task nice level) share of the CPU time with regard to other fair tasks, a FIFO task will run for a fixed time slice before yielding to another task (of the same priority - higher priority tasks always wins) and RR tasks will run till it blocks disregarding other tasks with the same priority.
Please note what I wrote above is accurate but not complete, because it does not take into account advance CPU reservation features, but it give the details about different scheduling method interact with each other.

yes !! now a days we have different scheduling policies at different stages in OS .. Round robin is done generally before getting the core execution ... fifo is done, at start stage of new coming process ... !!!

Related

what kind of scheduler does FreeRTOS use?

What kind of scheduler does FreeRTOS Use?
I have read somewhere that it is a run to complete scheduler, but on the other hand, I've also seen it being used with parallel tasks, so it wouldn't be a round robin scheduler?
The highest priority task is granted CPU time. If multiple tasks have equal priority, it uses round-robin scheduling among them. Lower priority tasks must wait.
It is important that high priority tasks don't execute 100% of the time, because lower priority tasks would never get CPU time. It's a fundamental problem of real-time programming.
Usually, you want to assign a high priority to a task that must react fast to some important event, perform quick action, and go to sleep, letting less important stuff to work in the meantime.
A generic example of such a system may be:
highest priority - device drivers tasks (valve control, ADC, DAC, etc)
medium priority - administrative subsystem (console task, telnet task)
lower priority - several application tasks (www server, data processing, etc)
Lowest priority is given to general applications, that are scheduled using round-robin, which gives a more or less equal number of CPU time.
Medium priority - console tasks. The system operator cannot be cut off by a malfunctioning www server that gets stuck in an infinite loop. Those tasks are not running 100% of the time. For example, it may execute command-line commands from the administrator.
Highest priority - device drivers, handling critical events, such as machinery control. You may be interested in opening a safety valve if boiler pressure gets too high and you really don't want to wait until some stupid HTML rendering is finished in the webserver thread. Such tasks are run for a limited amount of time only.

Switching from high priority task to low priority task in uCOS II

I'm new to RTOS (uCOS II) and learning it by reading the book written by uCOS author. I have a doubt and I'm unable to find the answer to it.
In uCOS the task with highest priority is given CPU as per the scheduling algorithm. So, if I create write a uCOS application by creating two tasks One with High priority ( Prio = 1 for ex) and the other with low priority ( for ex Prio = 9).
If for example the highest priority task is waiting for an event, then the scheduler should start executing the next higher priority task ? If thats correct then what part of the code switches High priority with low priority ?
The three arch dependent codes are :
1. Interrupt level context switch
2. Start highest priority task ready to run
3. Task level context switch
In case 1 after serving the interrupt the scheduler returns to the highest priority task. In case 2, its called when we start the OS by OSStart()
In case 3, When ever a higher priority task is made ready and its called by timer interrupt
Now, where exactly or how exactly will the scheduler assigns CPU to a lower priority task given the high priority task is in wait ??
Thanks
Another way to consider your question is to ask yourself how did the high priority task get into the waiting state. The answer to both questions is that the high priority task calls an RTOS routine such as GetEvent(). (I don't know whether that is a real uCOS-II routine -- I'm just generalizing.). The RTOS routine puts the high priority task into the waiting state (i.e. blocked) and then the RTOS scheduler finds the next highest priority task that is ready to run and switches to that task's context. The RTOS will have several blocking functions that allow for a task context switch. For example when you read from a queue or mailbox or when you wait for a semaphore or mutex.
The scheduler runs whenever a scheduling event occurs. In your example, that occurs when the high priority task calls the event wait. In general OS calls that may block or yield cause the scheduler to run. The scheduler also runs on exit from ISRs including the IS timer ISR.
In general, when the scheduler performs a context switch, it copies the current processor core registers to the task's control block, and copies the stored register values for the task being switched to into the processor registers, with the stack pointer and program-counter copies last. The change to the program-counter causes execution to continue in the new task with the task's own stack, in the state it was when it last blocked or was preemted. Preemption can occur when a scheduling event occurs in an ISR that causes a higher priority task to become ready.
The thing about uC/OS-II is that it is described in intricate detail in Jean Labrosse's book. The general principles of RTOS with examples using uC/OS-II are described in
this online course by Jack Ganssle.
Interrupt level context switch is used for preemptive, for example, you have an low priority task running, and high priority need to run (OSTimeDly timeout, for example), in this situation, Interrupt level context switch will pause low priority task, then switch to high priority one.
For high to low priority switch, it need high one give up CPU resource by calling OS_Sched

Types of Scheduling algorithms

I understand that CPU scheduling algorithms are classified into
Interactive - Round Robin, Priority scheduling
Batch Scheduling - FCFS,SJF
But I cant understand the reason behind the naming Interactive and Batch Scheduling..??
Why are algorithms like RR called interactive and those like FCFS called batch scheduling??
Thanks in advance...
The idea of Batch Scheduling is that there will be no change in the schedule during runtime: a process is scheduled to do an operation on data, and it runs until the process is finished. In 'interactive' scheduling, a new process could be launched while another process is running, and so time would be allocated for that process as well as the other. In batch scheduling the schedule is determined at the beginning of the operation.
Example of priority (interactive) scheduling:
Process A has a high priority, and process B has a low priority. Process A runs until it requires some input from the user. While A is waiting, the CPU gives some time to process B. Once the input for A has been gathered, process B is swapped out and process A is given the CPU, due to its higher priority.
Example of batch (FCFS) scheduling:
Process A and process B are processes to be scheduled. Process A is given to the CPU first, so B will not receive any time until A finishes running. Even if A pauses for user input, B will not run (and the CPU time while waiting for input is effectively wasted).
Of course, as with everything this low-level, it's not entirely that simple: to gain the illusion of multi-tasking, time is generally divided up between processes even when nothing is waiting for I/O. In priority scheduling, this may mean that more time slices are given to A than B while both are running so that A executes quicker. Both interactive and batch scheduling have their pros and cons: while interactive scheduling gives a quicker response time to the user and divides time up more 'fairly', an overhead is incurred due to how long a 'context switch' takes, which is the time taken for the processor to switch from working on process A to process B.
Interactive scheduling policies assign a time-slice to each process. Once the time-slice is over, the process is swapped even if not yet terminated. It can also be said that scheduling of this kind are preemptive.
Batch scheduling policies, instead, are non-preemptive. Once a Process is in the Running-status, it will not change status until it terminates.

What is round-robin scheduling?

In a multitasking operating system context, sometimes you hear the term round-robin scheduling. What does it refer to?
What other kind of scheduling is there?
Round Robin Scheduling
If you are a host in a party of 100 guests, round-robin scheduling would mean that you spend 1 minute (a fixed amount) per guest. You go through each guest one-by-one, and after 100 minutes, you would have spent 1 minute with each guest. More on Wikipedia.
There are many other types of scheduling, such as priority-based (i.e. most important people first), first-come-first-serve, earliest-deadline-first (i.e. person leaving earliest first), etc. You can start off by googling for scheduling algorithms or check out scheduling at Wikipedia
Timeslicing is inherent to any round-robin scheduling system in practice, AFAIK.
I disagree with InSciTek Jeff's implication that the following is round-robin scheduling:
That is, each task at the same priority in the round-robin rotation can be allowed to run until they reach a resource blocking condition before yeilding to the next task in the rotation.
I do not see how this could be considered round-robin. This is actually preemptive scheduling. However, it is possible to have a scheduling algorithm which has elements of both round-robin and preemptive scheduling, which VxWorks does if round-robin scheduling and preemption are both enabled (round-robin is disabled by default). The way to enable round-robin scheduling is to provide a non-zero value in kernelTimeSlice.
I do agree with this statement:
Therefore, while timeslicing based scheduling implies round-robin scheduling, round-robin scheduling does not require equal time based timeslicing.
You are right that it doesn't require equal time. Preemption can muck with that. And actually in VxWorks, if a task is preempted during round-robin scheduling, when the task gets control again it will execute for the rest of the time it was allocated.
Edit directed at InSciTek Jeff (I don't have comment privileges)
Yes, I was referring to task locking/interrupt disabling, although I obviously didn't express that very well. You preempted me (ha!) with your second comment. I hope to debate the more salient point, that you believe round-robin scheduling can exist without time slicing. Or did you just mean equal time based time slicing? I disagree with the former, but agree with the latter. I am eager to learn. Thanks.
Edit2 directed at Jeff:
Round-robin can exist without timeslicing. That is exactly what happens in VxWorks when kernelTimeSlice is disabled (zero).
I disagree with this statement. See this document section 2.2.3 with the heading Round-Robin Scheduling.
Round-robin scheduling uses time
slicing to achieve fair allocation of
the CPU to all tasks with the same
priority. Each task, in a group of
tasks with the same priority, executes
for a defined interval or time slice.
Round-robin scheduling is enabled by
calling kernelTimeSlice( ), which
takes a parameter for a time slice, or
interval. [...] If round-robin
scheduling is enabled, and preemption
is enabled for the executing task, the
system tick handler increments the
task's time-slice count.
Timeslicing is inherent in round-robin scheduling. Otherwise you are relying on a task to give up CPU control, which round-robin scheduling is intended to solve.
The answers here and even the Wikipedia article describe round-robin scheduling to inherently include periodic timeslicing. While this is very common, I believe that Round-Robin scheduling and timeslicing are not exactly the same thing. Certainly, for timeslicing to make sense, round-robin schedling is implied when rotating to each task, however you can do round-robin scheduling without having timeslicing. That is, each task at the same priority in the round-robin rotation can be allowed to run until they reach a resource block condition and only then having the next task in the rotation run. In other words, when equal priority tasks exist, the reschedling points are not time pre-emptive.
The above idea is actually realized specifically in the case of Wind River's VxWorks kernel. Within their priority scheme, tasks of each priority run round robin but do not timeslice without specifically enabling that feature in the kernel. The reason for this flexibility is to avoid the overhead of timeslicing tasks that are already known to run into a block within a well bounded time.
Therefore, while timeslicing based scheduling implies round-robin scheduling, round-robin scheduling does not require equal time based timeslicing.
An opinion. It seems that we are intertwining two mechanisms into one. Assuming only the OP's original assertion "In a multitasking operating system context" then
1 - A round robin scheduler always schedules the next item in a circular queue.
2 - How the scheduler regains control to perform the scheduling is separate and unrelated.
I don't disagree that the most prevalent method for 2 is time-slicing / yield waiting for resource, but as has been noted there are others. If I am not mistaken the first Mac's didn't utilize time-slicing, they used voluntary yield / yield waiting for resource (20+ year old brain cells can be wrong sometimes;).
Round robin is a simple scheduling algorithm where time is divided evenly among jobs without priority.
For example - if you have 5 processes running - each process will be allowed to run for 1/5 a unit of time before another process is allowed to run. Round robin is typically easy to implement in an OS.
Actaully, you are getting confused with Preemptive scheduling and Round robin. Infact RR is part of Preemptive scheduling.
Round Robin scheduling is based on time sharing also known as quantum (max time given by CPU to any process in one go). There are multiple processes(which require different time to complete aka burst time) in a queue and CPU has to process them all so it keeps switching between processes to give every process equal time based on the quantum value. This type of scheduling is known as Round Robin scheduling.
Checkout this simple video to understand round robin scheduling easily: https://www.youtube.com/watch?v=9hw-_qJ55K4

Task Schedulers

Had an interesting discussion with some colleagues about the best scheduling strategies for realtime tasks, but not everyone had a good understanding of the common or useful scheduling strategies.
For your answer, please choose one strategy and go over it in some detail, rather than giving a little info on several strategies. If you have something to add to someone else's description and it's short, add a comment rather than a new answer (if it's long or useful, or simply a much better description, then please use an answer)
What is the strategy - describe the general case (assume people know what a task queue is, semaphores, locks, and other OS fundamentals outside the scheduler itself)
What is this strategy optimized for (task latency, efficiency, realtime, jitter, resource sharing, etc)
Is it realtime, or can it be made realtime
Current strategies:
Priority Based Preemptive
Lowest power slowest clock
-Adam
As described in a paper titled Real-Time Task Scheduling for Energy-Aware Embedded Systems, Swaminathan and Chakrabarty describe the challenges of real-time task scheduling in low-power (embedded) devices with multiple processor speeds and power consumption profiles available. The scheduling algorithm they outline (and is shown to be only about 1% worse than an optimal solution in tests) has an interesting way of scheduling tasks they call the LEDF Heuristic.
From the paper:
The low-energy earliest deadline first
heuristic, or simply LEDF, is an
extension of the well-known earliest
deadline first (EDF) algorithm. The
operation of LEDF is as follows: LEDF
maintains a list of all released
tasks, called the “ready list”. When
tasks are released, the task with the
nearest deadline is chosen to be
executed. A check is performed to see
if the task deadline can be met by
executing it at the lower voltage
(speed). If the deadline can be met,
LEDF assigns the lower voltage to the
task and the task begins execution.
During the task’s execution, other
tasks may enter the system. These
tasks are assumed to be placed
automatically on the “ready list”.
LEDF again selects the task with the
nearest deadline to be executed. As
long as there are tasks waiting to be
executed, LEDF does not keep the pro-
cessor idle. This process is repeated
until all the tasks have been
scheduled.
And in pseudo-code:
Repeat forever {
if tasks are waiting to be scheduled {
Sort deadlines in ascending order
Schedule task with earliest deadline
Check if deadline can be met at lower speed (voltage)
If deadline can be met,
schedule task to execute at lower voltage (speed)
If deadline cannot be met,
check if deadline can be met at higher speed (voltage)
If deadline can be met,
schedule task to execute at higher voltage (speed)
If deadline cannot be met,
task cannot be scheduled: run the exception handler!
}
}
It seems that real-time scheduling is an interesting and evolving problem as small, low-power devices become more ubiquitous. I think this is an area in which we'll see plenty of further research and I look forward to keeping abreast!
One common real-time scheduling scheme is to use priority-based preemptive multitasking.
Each tasks is assigned a different priority level.
The highest priority task on the ready queue will be the task that runs. It will run until it either gives up the CPU (i.e. delays, waits on a semaphore, etc...) or a higher priority task becomes ready to run.
The advantage of this scheme is that the system designer has full control over what tasks will run at what priority. The scheduling algorithm is also simple and should be deterministic.
On the other hand, low priority tasks might be starved for CPU. This would indicate a design problem.