Given a positive integer n, I want to generate all possible n bit combinations in matlab.
For ex : If n=3, then answer should be
000
001
010
011
100
101
110
111
How do I do it ?
I want to actually store them in matrix. I tried
for n=1:2^4
r(n)=dec2bin(n,5);
end;
but that gave error "In an assignment A(:) = B, the number of elements in A and B must be the same.
Just loop over all integers in [0,2^n), and print the number as binary. If you always want to have n digits (e.g. insert leading zeros), this would look like:
for ii=0:2^n-1,
fprintf('%0*s\n', n, dec2bin(ii));
end
Edit: there are a number of ways to put the results in a matrix. The easiest is to use
x = dec2bin(0:2^n-1);
which will produce an n-by-2^n matrix of type char. Each row is one of the bit strings.
If you really want to store strings in each row, you can do this:
x = cell(1, 2^n);
for ii=0:2^n-1,
x{ii} = dec2bin(ii);
end
However, if you're looking for efficient processing, you should remember that integers are already stored in memory in binary! So, the vector:
x = 0 : 2^n-1;
Contains the binary patterns in the most memory efficient and CPU efficient way possible. The only trade-off is that you will not be able to represent patterns with more than 32 of 64 bits using this compact representation.
This is a one-line answer to the question which gives you a double array of all 2^n bit combinations:
bitCombs = dec2bin(0:2^n-1) - '0'
So many ways to do this permutation. If you are looking to implement with an array counter: set an array of counters going from 0 to 1 for each of the three positions (2^0,2^1,2^2). Let the starting number be 000 (stored in an array). Use the counter and increment its 1st place (2^0). The number will be 001. Reset the counter at position (2^0) and increase counter at 2^1 and go on a loop till you complete all the counters.
Related
For the hash function : h(k) = k mod m;
I understand that m=2^n will always give the last n LSB digits. I also understand that m=2^p-1 when K is a string converted to integers using radix 2^p will give same hash value for every permutation of characters in K. But why exactly "a prime not too close to an exact power of 2" is a good choice? What if I choose 2^p - 2 or 2^p-3? Why are these choices considered bad?
Following is the text from CLRS:
"A prime not too close to an exact power of 2 is often a good choice for m. For
example, suppose we wish to allocate a hash table, with collisions resolved by
chaining, to hold roughly n D 2000 character strings, where a character has 8 bits.
We don’t mind examining an average of 3 elements in an unsuccessful search, and
so we allocate a hash table of size m D 701. We could choose m D 701 because
it is a prime near 2000=3 but not near any power of 2."
Suppose we work with radix 2p.
2p-1 case:
Why that is a bad idea to use 2p-1? Let us see,
k = ∑ai2ip
and if we divide by 2p-1 we just get
k = ∑ai2ip = ∑ai mod 2p-1
so, as addition is commutative, we can permute digits and get the same result.
2p-b case:
Quote from CLRS:
A prime not too close to an exact power of 2 is often a good choice for m.
k = ∑ai2ip = ∑aibi mod 2p-b
So changing least significant digit by one will change hash by one. Changing second least significant bit by one will change hash by two. To really change hash we would need to change digits with bigger significance. So, in case of small b we face problem similar to the case then m is power of 2, namely we depend on distribution of least significant digits.
I have a 12-bit binary that I need to convert to a decimal. For example:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
Bit 1 is the most significant bit, Bit 12 is the least significant bit.
Note: This answer applies primarily to unsigned data types. For converting to signed types, a few extra steps are necessary, discussed here.
The bin2dec function is one option, but requires you to change the vector to a string first. bin2dec can also be slow compared to computing the number yourself. Here's a solution that's about 75 times faster:
>> A = [0,1,1,0,0,0,0,0,1,1,0,0];
>> B = sum(A.*2.^(numel(A)-1:-1:0))
B =
1548
To explain, A is multiplied element-wise by a vector of powers of 2, with the exponents ranging from numel(A)-1 down to 0. The resulting vector is then summed to give the integer represented by the binary pattern of zeroes and ones, with the first element in the array being considered the most significant bit. If you want the first element to be considered the least significant bit, you can do the following:
>> B = sum(A.*2.^(0:numel(A)-1))
B =
774
Update: You may be able to squeeze even a little more speed out of MATLAB by using find to get the indices of the ones (avoiding the element-wise multiplication and potentially reducing the number of exponent calculations needed) and using the pow2 function instead of 2.^...:
B = sum(pow2(find(flip(A))-1)); % Most significant bit first
B = sum(pow2(find(A)-1)); % Least significant bit first
Extending the solution to matrices...
If you have a lot of binary vectors you want to convert to integers, the above solution can easily be modified to convert all the values with one matrix operation. Suppose A is an N-by-12 matrix, with one binary vector per row. The following will convert them all to an N-by-1 vector of integer values:
B = A*(2.^(size(A, 2)-1:-1:0)).'; % Most significant bit first
B = A*(2.^(0:size(A, 2)-1)).'; % Least significant bit first
Also note that all of the above solutions automatically determine the number of bits in your vector by looking at the number of columns in A.
Dominic's answer assumes you have access to the Data Acquisition toolbox. If not use bin2dec:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A) )
or (in reverse)
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A(end:-1:1)) )
depending on what you intend to be bit 1 and 12!
If the MSB is right-most (I'm not sure what you mean by Bit 1, sorry if that seems stupid):
Try:
binvec2dec(A)
Output should be:
ans =
774
If the MSB is left-most, use fliplr(A) first.
I have looked thoroughly on the internet for an answer to this question, but it seems to be too specific for an answer anywhere else. This is my last stop.
To preface, this is not a homework problem, but it is adapted from an online Coursera course, whose quiz has already passed. I got the correct answer, but it was mostly luck. Also, it is a more of a general programming question than anything related to the course, so I know for a fact that it is within my right to ask it on a public forum.
The last thing is that I'm trying to do this in MatLab; however if you have an answer that is in C++ or Python or any other high level language, that would be wonderful, as I could easily adapt those solutions to MatLab syntax.
Here it is:
I have two vectors, T and M, each with 600,000 elements/entries/integers.
T is entered as milliseconds from 1 to 600,000 in ascending order, and each element in M represents 'on' or 'off' (entered as 1 or 0 respectively) for each corresponding millisecond entry in T. So there are random 1's and 0's in M that correspond to a particular millisecond from 1 to 600,000 in T.
I need to take, starting with the 150th millisecond of T, and in 150 element/millisecond increments from there on (inclusive), the average millisecond value of those groups of 150 but ONLY of those milliseconds whose entries are 1 in M ('on'). For example, I need to look at the first 150 milliseconds in T, see which ones have a value of 1 in M, and then average them. Then I need to do it again with entries 151 to 300 in T, then 301 to 450, etc. etc. These new averages should also be stored in a new vector. The problem is, the number of corresponding 1's in M isn't going to be the same for every group of 150 milliseconds in T. (And yes, we are trying to average the actual value of the milliseconds, so the values we are using to average and the order of the entries in T will be the same).
My attempt:
It turns out there are only 53,583 random 1's in M (out of the 600,000 entries, the rest are 0). I used a 'find' operator to extract those entries from M that are a 1 into a new vector K that has the millisecond value corresponding from T. So K looks like a bunch of random numbers in ascending order, which is just a list of all the milliseconds in T who are 'on' (assigned a 1 in M).
So K looks something like [2 5 11 27 39 40 79 ...... 599,698 599,727 etc.] (all of the millisecond values who are a 1 in M).
So I have the vector K which is all of the values that I need to average in groups of 150, but the problem is that I need to go in groups of 150 based on the vector T (1 to 600,000), which means there won't always be the same number of 1's (or values in K) in every group of 150 milliseconds in T, which in turn means the number I need to divide by to get the average of each group is going to change for each group of 150. I know I need to use a loop to do the average millisecond value for every 150 entries, but how do I get the dividing number (the number of entries for each group of 150 who is assigned a 1 or 'on') to change on each iteration of the loop? Is there a way to bind T and M together so that they only use the requisite values from K whenever there is a 1 in M, and then just use a simple counter to average?
It's not a complicated problem, but it is very hard to explain. Sorry about that! I hope I explained as clearly as I could. Any help would be appreciated, although I'm sure you'll have questions first.
Thank you very much!
I think this should work OK.
sz = length(T);
n = sz / 150;
K = T.*M';
t = 1;
aver = zeros(n-1,1); % Your result vector
for i = 1:150:sz-150
aver(t) = mean(K(i:(i+150)-1));
t = t + 1;
end
-Rob
I have data files F_j, each containing a list of numbers with an unknown number of decimal places. Each file contains discretized measurements of some continuous variable and
I want to find the discretization step d_j for file F_j
A solution I could come up with: for each F_j,
find the number (n_j) of decimal places;
multiply each number in F_j with 10^{n_j} to obtain integers;
find the greatest common divisor of the entire list.
I'm looking for an elegant way to find n_j with Matlab.
Also, finding the gcd of a long list of integers seems hard — do you have any better idea?
Finding the gcd of a long list of numbers isn't too hard. You can do it in time linear in the size of the list. If you get lucky, you can do it in time a lot less than linear. Essentially this is because:
gcd(a,b,c) = gcd(gcd(a,b),c)
and if either a=1 or b=1 then gcd(a,b)=1 regardless of the size of the other number.
So if you have a list of numbers xs you can do
g = xs(1);
for i = 2:length(xs)
g = gcd(x(i),g);
if g == 1
break
end
end
The variable g will now store the gcd of the list.
Here is some sample code that I believe will help you get the GCD once you have the numbers you want to look at.
A = [15 30 20];
A_min = min(A);
GCD = 1;
for n = A_min:-1:1
temp = A / n;
if (max(mod(temp,1))==0)
% yay GCD found
GCD = n;
break;
end
end
The basic concept here is that the default GCD will always be 1 since every number is divisible by itself and 1 of course =). The GCD also can't be greater than the smallest number in the list, thus I start with the smallest number and then decriment by 1. This is assuming that you have already converted the numbers to a whole number form at this point. Decimals will throw this off!
By using the modulus of 1 you are testing to see if the number is a whole number, if it isn't you will have a decmial remainder left which is greater than 0. If you anticipate having to deal with negative you will have to tweak this test!
Other than that, the first time you find a number where the modulus of the list (mod 1) is all zeros you've found the GCD.
Enjoy!
I have a 12-bit binary that I need to convert to a decimal. For example:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
Bit 1 is the most significant bit, Bit 12 is the least significant bit.
Note: This answer applies primarily to unsigned data types. For converting to signed types, a few extra steps are necessary, discussed here.
The bin2dec function is one option, but requires you to change the vector to a string first. bin2dec can also be slow compared to computing the number yourself. Here's a solution that's about 75 times faster:
>> A = [0,1,1,0,0,0,0,0,1,1,0,0];
>> B = sum(A.*2.^(numel(A)-1:-1:0))
B =
1548
To explain, A is multiplied element-wise by a vector of powers of 2, with the exponents ranging from numel(A)-1 down to 0. The resulting vector is then summed to give the integer represented by the binary pattern of zeroes and ones, with the first element in the array being considered the most significant bit. If you want the first element to be considered the least significant bit, you can do the following:
>> B = sum(A.*2.^(0:numel(A)-1))
B =
774
Update: You may be able to squeeze even a little more speed out of MATLAB by using find to get the indices of the ones (avoiding the element-wise multiplication and potentially reducing the number of exponent calculations needed) and using the pow2 function instead of 2.^...:
B = sum(pow2(find(flip(A))-1)); % Most significant bit first
B = sum(pow2(find(A)-1)); % Least significant bit first
Extending the solution to matrices...
If you have a lot of binary vectors you want to convert to integers, the above solution can easily be modified to convert all the values with one matrix operation. Suppose A is an N-by-12 matrix, with one binary vector per row. The following will convert them all to an N-by-1 vector of integer values:
B = A*(2.^(size(A, 2)-1:-1:0)).'; % Most significant bit first
B = A*(2.^(0:size(A, 2)-1)).'; % Least significant bit first
Also note that all of the above solutions automatically determine the number of bits in your vector by looking at the number of columns in A.
Dominic's answer assumes you have access to the Data Acquisition toolbox. If not use bin2dec:
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A) )
or (in reverse)
A = [0,1,1,0,0,0,0,0,1,1,0,0];
bin2dec( sprintf('%d',A(end:-1:1)) )
depending on what you intend to be bit 1 and 12!
If the MSB is right-most (I'm not sure what you mean by Bit 1, sorry if that seems stupid):
Try:
binvec2dec(A)
Output should be:
ans =
774
If the MSB is left-most, use fliplr(A) first.