I am trying to perform canny edge detector without calling the canny function in Matlab. I wrote a few functions for the gaussian filter(sigma = 1) and non-maximum suppression. The original image and the resultant image is shown.. Not sure what the error...
The original image is
The output i get is
I have attached the code :
%% Read in
I = imread('fruit.jpg');
figure(1),imshow(I)
I = double(I);
%% Determine Mask Size
sigma = 2;
w = mask_size(sigma);
%% Gaussian Smoothing Filter
[ G,sum ] = gauss_mask(w,sigma);
%% Convolve
I1 = (1/sum) * image_convolution(I,w,G);
figure(2),imshow(I1);
%% Ix(derivative in x-direction)
Ix= delx(I1);
figure(3),imshow(Ix);
%% Iy(derivative in y-direction)
Iy= dely(I1);
figure(4),imshow(Iy);
%% Gradient Magnitude
If = grad_mag(Ix,Iy);
figure(5),imshow(If);
%% Non-maxmimum suppression
It = suppression(If,abs(Ix),abs(Iy));
figure(6),imshow(It);
function [ G,sum ] = gauss_mask( w,sigma )
min = 1;
m = floor(w/2);
sum = 0;
for x = 1: w
for y = 1:w
g = x-m-1;
h = y-m-1;
k = -(g^2 +h^2)/(2*sigma^2);
G(x,y) = exp(k);
sum = sum + G(x,y);
if min > G(x,y)
min = G(x,y);
end
end
end
B=1/min;
G= B * G;
G = round(G);
end
function [ I2 ] = image_convolution(I,w,G)
m= (w-1)/2;
N= size(I,1);
M=size(I,2);
for i=1:N
for j=1:M
if (i > N-m-1 || j > M-m-1 || i<m+1 || j <m+1)
I2(i,j) = 0;
continue;
end
sum1 = 0;
for u=1:w
for v=1:w
sum1 = sum1+I(i+u-m-1,j+v-m-1)*G(u,v);
end
end
I2(i,j)=sum1;
end
end
end
function [ Ix ] = delx( image )
mask = [-1 0 1; -2 0 2; -1 0 1];
Ix =image_convolution(image,3,mask);
end
function [ Iy ] = dely( image )
mask = [-1 -2 -1;0 0 0;1 2 1];
Iy =image_convolution(image,3,mask);
end
function [ Imag ] = grad_mag(Ix,Iy)
m=size(Ix,1);
n=size(Ix,2);
for i=1:m
for j=1:n
Imag(i,j) =sqrt(Ix(i,j)^2 + Iy(i,j)^2);
end
end
end
function [ It ] = suppression( If,Ix,Iy )
m=size(Ix,1);
n=size(Ix,2);
for i = 1:m
for j=1:n
if (j == 1 || j == n || i == 1 || j == n)
It(i,j) = 0;
else if (Ix(i,j)*Iy(i,j)> 0)
f1 =If(i-1,j-1);
f2 =If(i,j);
f3 =If(i+1,j+1);
It(i,j) = thinning(f1,f2,f3);
else if(Ix(i,j)*Iy(i,j)< 0)
f1 =If(i+1,j-1);
f2 =If(i,j);
f3 =If(i-1,j+1);
It(i,j) = thinning(f1,f2,f3);
else if(abs(Ix(i,j))-abs(Iy(i,j))>5)
f1 =If(i-1,j);
f2 =If(i,j);
f3 =If(i+1,j);
It(i,j) = thinning(f1,f2,f3);
else if(abs(Iy(i,j))-abs(Ix(i,j)) > 5)
f1 =If(i,j-1);
f2 =If(i,j);
f3 =If(i,j+1);
It(i,j) = thinning(f1,f2,f3);
end
end
end
end
end
end
end
end
function [ w ] = thinning( f1,f2,f3 )
if( f2>f1 && f2>f3)
w =1;
else
w= 0;
end
end
function sz = mask_size(sigma)
sz = floor(6*sigma) + 1;
end
There is a lot of noise... how can i solve the error? i need some help....
Error is actually at thinning function.
if( f2>f1 && f2>f3)
w =f2;
else
w= 0;
You should do both:
Smooth image to eliminate noise (conv with a gaussian matrix) before do any manipulation on it.
Take a higher threshold in Hysteresis part of the algorithm:
Take larger T1 when you do this part of the algorithm:
Define two thresholds T1 > T2
for every pixel with value greater than T1 is presumed to be an edge pixel.
Your problem is at thresholding add a strong thresholder to get rid of false edges.
First you have to smooth image with a Gaussian function. Then find gradient and magnitude of input image. Perform nonmaxima suppression. After that do hysteresis thresholding.
Seeing your Output Edge Image, I can say that You should check..
Hysteresis Function is working properly or not
You may take HIGH threshold little higher
you can smooth the image little more.
Related
I need to run the K-Means algorithm on the key points of the Sift algorithm in MATLAB .I want to cluster the key points in the image but I do not know how to do it.
First, put the key points into X with x coordinates in the first column and y coordinates in the second column like this
X=[reshape(keypxcoord,numel(keypxcoord),1),reshape(keypycoord,numel(keypycoord),1))]
Then if you have the statistical toolbox, you can just use the built in 'kmeans' function lik this
output = kmeans(X,num_clusters)
Otherwise, write your own kmeans function:
function [ min_group, mu ] = mykmeans( X,K )
%MYKMEANS
% X = N obervations of D element vectors
% K = number of centroids
assert(K > 0);
D = size(X,1); %No. of r.v.
N = size(X,2); %No. of observations
group_size = zeros(1,K);
min_group = zeros(1,N);
step = 0;
%% init centroids
mu = kpp(X,K);
%% 2-phase iterative approach (local then global)
while step < 400
%% phase 1, batch update
old_group = min_group;
% computing distances
d2 = distances2(X,mu);
% reassignment all points to closest centroids
[~, min_group] = min(d2,[],1);
% recomputing centroids (K number of means)
for k = 1 : K
group_size(k) = sum(min_group==k);
% check empty group
%if group_size(k) == 0
assert(group_size(k)>0);
%else
mu(:,k) = sum(X(:,min_group==k),2)/group_size(k);
%end
end
changed = sum(min_group ~= old_group);
p1_converged = changed <= N*0.001;
%% phase 2, individual update
changed = 0;
for n = 1 : N
d2 = distances2(X(:,n),mu);
[~, new_group] = min(d2,[],1);
% recomputing centroids of affected groups
k = min_group(n);
if (new_group ~= k)
mu(:,k)=(mu(:,k)*group_size(k)-X(:,n));
group_size(k) = group_size(k) - 1;
mu(:,k)=mu(:,k)/group_size(k);
mu(:,new_group) = mu(:,new_group)*group_size(new_group)+ X(:,n);
group_size(new_group) = group_size(new_group) + 1;
mu(:,new_group)=mu(:,new_group)/group_size(new_group);
min_group(n) = new_group;
changed = changed + 1;
end
end
%% check convergence
if p1_converged && changed <= N*0.001
break;
else
step = step + 1;
end
end
end
function d2 = distances2(X, mu)
K = size(mu,2);
N = size(X,2);
d2 = zeros(K,N);
for j = 1 : K
d2(j,:) = sum((X - repmat(mu(:,j),1,N)).^2,1);
end
end
function mu = kpp( X,K )
% kmeans++ init
D = size(X,1); %No. of r.v.
N = size(X,2); %No. of observations
mu = zeros(D, K);
mu(:,1) = X(:,round(rand(1) * (size(X, 2)-1)+1));
for k = 2 : K
% computing distances between centroids and observations
d2 = distances2(X, mu(1:k-1));
% assignment
[min_dist, ~] = min(d2,[],1);
% select new centroids by selecting point with the cumulative dist
% value (distance) larger than random value (falls in range between
% dist(n-1) : dist(n), dist(0)= 0)
rv = sum(min_dist) * rand(1);
for n = 1 : N
if min_dist(n) >= rv
mu(:,k) = X(:,n);
break;
else
rv = rv - min_dist(n);
end
end
end
end
I have a 2D image (matrix). I have found the local maxima of this image. Now I want to define the boundaries around each local maxima in such a way that I want all the pixels around the local maxima that have a value above 85% of the maximum.
Here is my existing code:
function [location]= Mfind_peak_2D( Image,varargin )
p = inputParser;
addParamValue(p,'max_n_loc_max',5);
addParamValue(p,'nb_size',3);
addParamValue(p,'thre',0);
addParamValue(p,'drop',0.15);
parse(p,varargin{:});
p=p.Results;
if sum(isnan(Image(:)))>0
Image(isnan(Image))=0;
end
hLocalMax = vision.LocalMaximaFinder;
hLocalMax.MaximumNumLocalMaxima = p.max_n_loc_max;
hLocalMax.NeighborhoodSize = [p.nb_size p.nb_size];
end
This should do the job (the code is full of comments and should be pretty self-explanatory but if you have doubts feel free to ask for more details):
% Load the image...
img = imread('peppers.png');
img = rgb2gray(img);
% Find the local maxima...
mask = ones(3);
mask(5) = 0;
img_dil = imdilate(img,mask);
lm = img > img_dil;
% Find the neighboring pixels of the local maxima...
img_size = size(img);
img_h = img_size(1);
img_w = img_size(2);
res = cell(sum(sum(lm)),3);
res_off = 1;
for i = 1:img_h
for j = 1:img_w
if (~lm(i,j))
continue;
end
value = img(i,j);
value_thr = value * 0.85;
% Retrieve the neighboring column and row offsets...
c = bsxfun(#plus,j,[-1 0 1 -1 1 -1 0 1]);
r = bsxfun(#plus,i,[-1 -1 -1 0 0 1 1 1]);
% Filter the invalid positions...
idx = (c > 0) & (c <= img_w) & (r > 0) & (r <= img_h);
% Transform the valid positions into linear indices...
idx = (((idx .* c) - 1) .* img_h) + (idx .* r);
idx = reshape(idx.',1,numel(idx));
idx = idx(idx > 0);
% Retrieve the neighbors and filter them based on te threshold...
neighbors = img(idx);
neighbors = neighbors(neighbors > value_thr);
% Update the final result...
res(res_off,:) = {sub2ind(img_size,i,j) value neighbors};
res_off = res_off + 1;
end
end
res = sortrows(res,1);
The variable res will be a cell matrix with three columns: the first one contain the linear indices to the local maxima of the image, the second one contains the values of the local maxima and the third one a vector with the pixels around the local maxima that fall within the specified threshold.
I am programming a simple perceptron in matlab but it is not converging and I can't figure out why.
The goal is to binary classify 2D points.
%P1 Generate a dataset of two-dimensional points, and choose a random line in
%the plane as your target function f, where one side of the line maps to +1 and
%the other side to -1. Let the inputs xn 2 R2 be random points in the plane,
%and evaluate the target function f on each xn to get the corresponding output
%yn = f(xn).
clear all;
clc
clear
n = 20;
inputSize = 2; %number of inputs
dataset = generateRandom2DPointsDataset(n)';
[f , m , b] = targetFunction();
signs = classify(dataset,m,b);
weights=ones(1,2)*0.1;
threshold = 0;
fprintf('weights before:%d,%d\n',weights);
mistakes = 1;
numIterations = 0;
figure;
plotpv(dataset',(signs+1)/2);%mapping signs from -1:1 to 0:1 in order to use plotpv
hold on;
line(f(1,:),f(2,:));
pause(1)
while true
mistakes = 0;
for i = 1:n
if dataset(i,:)*weights' > threshold
result = 1;
else
result = -1;
end
error = signs(i) - result;
if error ~= 0
mistakes = mistakes + 1;
for j = 1:inputSize
weights(j) = weights(j) + error*dataset(i,j);
end
end
numIterations = numIterations + 1
end
if mistakes == 0
break
end
end
fprintf('weights after:%d,%d\n',weights);
random points and signs are fine since plotpv is working well
The code is based on that http://es.mathworks.com/matlabcentral/fileexchange/32949-a-perceptron-learns-to-perform-a-binary-nand-function?focused=5200056&tab=function.
When I pause the infinite loop, this is the status of my vairables:
I am not able to see why it is not converging.
Additional code( it is fine, just to avoid answers asking for that )
function [f,m,b] = targetFunction()
f = rand(2,2);
f(1,1) = 0;
f(1,2) = 1;
m = (f(2,2) - f(2,1));
b = f(2,1);
end
function dataset = generateRandom2DPointsDataset(n)
dataset = rand(2,n);
end
function values = classify(dataset,m,b)
for i=1:size(dataset,1)
y = m*dataset(i,1) + b;
if dataset(i,2) >= y, values(i) = 1;
else values(i) = -1;
end
end
end
I'm looking to implement my own Matlab function that can be used to compute image filtering with a 3x3 kernel.
It has to be like this: function [ output_args ] = fFilter( img, mask )
where img is a original image and mask is a kernel (for example B = [1,1,1;1,4,1;1,1,1] )
I'm not supposed to use any in-built functions from Image Processing Toolbox.
I have to use this
where:
s is an image after filter
p is an image before filter
M is a kernel
and N is 1 if sum(sum(M)) == 0 else N = sum(sum(M))
I'm new to MATLAB and this is like black magic for me -_-
This should do the work (Wasn't verified):
function [ mO ] = ImageFilter( mI, mMask )
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
numRows = size(mI, 1);
numCols = size(mI, 2);
% Assuming Odd number of Rows / Columns
maskRadius = floor(siez(mMask, 1) / 2);
sumMask = sum(mMask(:));
if(sumMask ~= 0)
mMask(:) = mMask / sumMask;
end
mO = zeros([numRows, numCols]);
for jj = 1:numCols
for ii = 1:numRows
for kk = -maskRadius:maskRadius
nn = kk + 1; %<! Mask Index
colIdx = min(max(1, jj + kk), numCols); %<! Replicate Boundary
for ll = -maskRadius:maskRadius
mm = ll + 1; %<! Mask Index
rowIdx = min(max(1, ii + ll), numRows); %<! Replicate Boundary
mO(ii, jj) = mO(ii, jj) + (mMask(mm, nn) * mI(rowIdx, colIdx));
end
end
end
end
end
The above is classic Correlation (Image Filtering) with Replicate Boundary Condition.
For my studies I had to write a PDE solver for the Poisson equation on a disc shaped domain using the finite difference method.
I already passed the Lab exercise. There is one issue in my code I couldn't fix. Function fun1 with the boundary value problem gun2 is somehow oscillating at the boundary. When I use fun2 everything seems fine...
Both functions use at the boundary gun2. What is the problem?
function z = fun1(x,y)
r = sqrt(x.^2+y.^2);
z = zeros(size(x));
if( r < 0.25)
z = -10^8*exp(1./(r.^2-1/16));
end
end
function z = fun2(x,y)
z = 100*sin(2*pi*x).*sin(2*pi*y);
end
function z = gun2(x,y)
z = x.^2+y.^2;
end
function [u,A] = poisson2(funame,guname,M)
if nargin < 3
M = 50;
end
%Mesh Grid Generation
h = 2/(M + 1);
x = -1:h:1;
y = -1:h:1;
[X,Y] = meshgrid(x,y);
CI = ((X.^2 +Y.^2) < 1);
%Boundary Elements
Sum= zeros(size(CI));
%Sum over the neighbours
for i = -1:1
Sum = Sum + circshift(CI,[i,0]) + circshift(CI,[0,i]) ;
end
%if sum of neighbours larger 3 -> inner note!
CI = (Sum > 3);
%else boundary
CB = (Sum < 3 & Sum ~= 0);
Sum= zeros(size(CI));
%Sum over the boundary neighbour nodes....
for i = -1:1
Sum = Sum + circshift(CB,[i,0]) + circshift(CB,[0,i]);
end
%If the sum is equal 2 -> Diagonal boundary
CB = CB + (Sum == 2 & CB == 0 & CI == 0);
%Converting X Y to polar coordinates
Phi = atan(Y./X);
%Converting Phi R back to cartesian coordinates, only at the boundarys
for j = 1:M+2
for i = 1:M+2
if (CB(i,j)~=0)
if j > (M+2)/2
sig = 1;
else
sig = -1;
end
X(i,j) = sig*1*cos(Phi(i,j));
Y(i,j) = sig*1*sin(Phi(i,j));
end
end
end
%Numberize the internal notes u1,u2,......,un
CI = CI.*reshape(cumsum(CI(:)),size(CI));
%Number of internal notes
Ni = nnz(CI);
f = zeros(Ni,1);
k = 1;
A = spalloc(Ni,Ni,5*Ni);
%Create matix A!
for j=2:M+1
for i =2:M+1
if(CI(i,j) ~= 0)
hN = h;hS = h; hW = h; hE = h;
f(k) = fun(X(i,j),Y(i,j));
if(CB(i+1,j) ~= 0)
hN = abs(1-sqrt(X(i,j)^2+Y(i,j)^2));
f(k) = f(k) + gun(X(i,j),Y(i+1,j))*2/(hN^2+hN*h);
A(k,CI(i-1,j)) = -2/(h^2+h*hN);
else
if(CB(i-1,j) ~= 0) %in negative y is a boundry
hS = abs(1-sqrt(X(i,j)^2+Y(i,j)^2));
f(k) = f(k) + gun(X(i,j),Y(i-1,j))*2/(hS^2+h*hS);
A(k,CI(i+1,j)) = -2/(h^2+h*hS);
else
A(k,CI(i-1,j)) = -1/h^2;
A(k,CI(i+1,j)) = -1/h^2;
end
end
if(CB(i,j+1) ~= 0)
hE = abs(1-sqrt(X(i,j)^2+Y(i,j)^2));
f(k) = f(k) + gun(X(i,j+1),Y(i,j))*2/(hE^2+hE*h);
A(k,CI(i,j-1)) = -2/(h^2+h*hE);
else
if(CB(i,j-1) ~= 0)
hW = abs(1-sqrt(X(i,j)^2+Y(i,j)^2));
f(k) = f(k) + gun(X(i,j-1),Y(i,j))*2/(hW^2+h*hW);
A(k,CI(i,j+1)) = -2/(h^2+h*hW);
else
A(k,CI(i,j-1)) = -1/h^2;
A(k,CI(i,j+1)) = -1/h^2;
end
end
A(k,k) = (2/(hE*hW)+2/(hN*hS));
k = k + 1;
end
end
end
%Solve linear system
u = A\f;
U = zeros(M+2,M+2);
p = 1;
%re-arange u
for j = 1:M+2
for i = 1:M+2
if ( CI(i,j) ~= 0)
U(i,j) = u(p);
p = p+1;
else
if ( CB(i,j) ~= 0)
U(i,j) = gun(X(i,j),Y(i,j));
else
U(i,j) = NaN;
end
end
end
end
surf(X,Y,U);
end
I'm keeping this answer short for now, but may extend when the question contains more info.
My first guess is that what you are seeing is just numerical errors. Looking at the scales of the two graphs, the peaks in the first graph are relatively small compared to the signal in the second graph. Maybe there is a similar issue in the second that is just not visible because the signal is much bigger. You could try to increase the number of nodes and observe what happens with the result.
You should always expect to see numerical errors in such simulations. It's only a matter of trying to get their magnitude as small as possible (or as small as needed).