after rotating image on matlab..then results go on bad:( - matlab

I am intersted with determining branchpoints of retinal images and then registering these images. First of all I am using a algorithm for extracting of vessels from image then skeletization and finding branchpoints. At first operation all things were ok but if I rotate same image by randomize angle, number of branchpoints are very increase. what are your opinions about this problem...
related links of images :
http://e1204.hizliresim.com/w/6/449m6.jpg
http://e1204.hizliresim.com/w/6/449by.jpg

imrotate's standard interpolation algorithm is nearest neighbor, that tends to transform your image in a beautiful saw.
If you rotate your image with imrotate, try passing as the third parameter a better method, like bicubic or bilinear, both will be much better.
The syntax is simple:
imrotate(img, degrees, 'bicubic');

Related

Restoring the image of a face's plane

I am using an API to analyze faces in Matlab, where I get for each picture a 3X3 rotation matrix of the face's orientation, telling which direction the head is pointing.
I am trying to normalize the image according to that matrix, so that it will be distorted to get the image of the face's plane. This is something like 'undoing' the projection of the face to the camera plane. For example, if the head is directed a little to the left, it will stretch the left side to (more or less) preserve the face's original proportions.
Tried using 'affine2d' and 'projective2d' with 'imwarp', but it didn't achieve that goal
Achieving your goal with simple tools like affine transformations seems impossible to me since a face is hardly a flat surface. An extreme example: Imagine the camera recording a profile view of someone's head. How are you going to reconstruct the missing half of the face?
There have been successful attempts to change the orientation of faces in images and real-time video, but the methods used are quite complex:
[We] propose a gaze correction method that needs just a
single webcam. We apply recent shape deformation techniques
to generate a 3D face model that matches the user’s face. We
then render a gaze-corrected version of this face model and
seamlessly insert it into the original image.
(Giger et al., https://graphics.ethz.ch/Downloads/Publications/Papers/2014/Gig14a/Gig14a.pdf)

"Simple" edge - line - detection

At image i need find "table" - simple rectangle.
Problem is with edge recognition, because potencial photos will be "dark".
I tried edge - sobel, canny, log, .... - recognition and after that Hough transformation and line finding. But this algorithms are not enough for this task.
Something what can help me:
- it is rectangle!, only in perspective view (something like fitting perspective rectangle?)
- that object MUST cover atleast for example 90% of photo (i know i need looking near photo edges)
- that rectangle have fast same color (for example wood dining table)
- i need find atleast "only" 4 corners..(but yes, better will be find the edges of that table)
I know how for example sobel, canny or log algorithms works and Hough as well. And naturally those algorithms fail at dark or non-contrast images. But is there some another method for example based at "fitting"?
Images showing photo i can get (you see it would be dark) and what i need find:
and this is really "nice" picture (without noise). I tested it on more noise pictures and the result was..simply horrible..
Result of this picture with actual algorithm log (with another ones it looks same):
I know image and edge recognition is not simple challenge but are there some new better methods or something like that what i can try to use?
In one of posts in here i found LSD algorithm. It seems very nice descripted and it seems it is recognizing really nice straight lines as well. Do you think it would be better to use it insted of the canny or sobel detection?
Another solution will be corner detection, on my sample images it works better but it recognize too much points and there will problem with time..i will need to connect all the points and "find" the table..
Another solution:
I thought about point to point mapping. That i will have some "virtual" table and try to map that table above with that "virtual" table (simple 2d square in painting :] )..But i think point to point mapping will give me big errors or it will not working.
Does someone have any advice what algorithm use to?
I tried recognize edges in FIJI and then put the edge detected image in matlab, but with hough it works bad as well..:/..
What do you think it would be best to use? In short i need find some algorithm working on non contrast, dark images.
I'd try some modified snakes algorithm:
you parameterize your rectangle with 4 points and initialize them somewhere in the image corners. Then you move the points towards image features using some optimization algorithm (e.g. gradient descent, simulated annealing, etc.).
The image features could be a combination of edge features (e.g. sobel directly or sobel of some gaussian filtered image) to be evaluated on the lines between those four points and corner features to be evaluated at those 4 points.
Additionally you can penalize unlikely rectangles (maybe depending on the angles between the points or on the distance to the image boundary).

Detecting shape from the predefined shape and cropping the background

I have several images of the pugmark with lots of irrevelant background region. I cannot do intensity based algorithms to seperate background from the foreground.
I have tried several methods. one of them is detecting object in Homogeneous Intensity image
but this is not working with rough texture images like
http://img803.imageshack.us/img803/4654/p1030076b.jpg
http://imageshack.us/a/img802/5982/cub1.jpg
http://imageshack.us/a/img42/6530/cub2.jpg
Their could be three possible methods :
1) if i can reduce the roughness factor of the image and obtain the more smoother texture i.e more flat surface.
2) if i could detect the pugmark like shape in these images by defining rough pugmark shape in the database and then removing the background to obtain image like http://i.imgur.com/W0MFYmQ.png
3) if i could detect the regions with depth and separating them from the background based on difference in their depths.
please tell if any of these methods would work and if yes then how to implement them.
I have a hunch that this problem could benefit from using polynomial texture maps.
See here: http://www.hpl.hp.com/research/ptm/
You might want to consider top-down information in the process. See, for example, this work.
Looks like you're close enough from the pugmark, so I think that you should be able to detect pugmarks using Viola Jones algorithm. Maybe a PCA-like algorithm such as Eigenface would work too, even if you're not trying to recognize a particular pugmark it still can be used to tell whether or not there is a pugmark in the image.
Have you tried edge detection on your image ? I guess it should be possible to finetune Canny edge detector thresholds in order to get rid of the noise (if it's not good enough, low pass filter your image first), then do shape recognition on what remains (you would then be in the field of geometric feature learning and structural matching) Viola Jones and possibly PCA-like algorithm would be my first try though.

Image processing: Rotational alignment of an object

I have a stack of images with a bar close to the center. As the stack progresses the bar pivots around one end and the entire stack contains images with the bar rotated at many different angles up to 45 degrees above or below horizontal.
As shown here:
I'm looking for a way to rotate the bar and/or entire image and align everything horizontally before I do my other processing. Ideally this would be done in Matlab / imageJ / ImageMagick. I'm currently trying to work out a method using first Canny edge detection, followed by a Hough transform, followed by an image rotation, but I'm hoping this is a specific case of a more general problem which has already been solved.
If you have the image processing toolbox you can use regionprops with the 'Orientation' property to find the angle.
http://www.mathworks.com/help/images/ref/regionprops.html#bqkf8ji
The problem you are solving is known as image registration or image alignment.
-The first thing you need to due is to treshold the image, so you end up with a black and white image. This will simplify the process.
-Then you need to calculate the mass center of the imgaes and then translate them to match each others centers.
Then you need to rotate the images to matcheach other. This could be done using the principal axis measure. The principal axis will give you the two axis that explain most of the variance in the population. Which will basically give you a vector showing which way your bar is pointing. Then all you need to due is rotate the bars in the same direction.
-After the principal axis transformation you can try rotating the pictues a little bit more in each direction to try and optimise the rotation.
All the way through your translation and rotation you need a measure for showing you how good a fit your tranformation is. This measure can be many thing. If the picture is black and white a simple subtraction of the pictures is enough. Otherwise you can use measures like mutual information.
...you can also look at procrustes analysis see this link for a matlab function http://www.google.dk/search?q=gpa+image+analysis&oq=gpa+image+analysis&sugexp=chrome,mod=9&sourceid=chrome&ie=UTF-8#hl=da&tbo=d&sclient=psy-ab&q=matlab+procrustes+analysis&oq=matlab+proanalysis&gs_l=serp.3.1.0i7i30l4.5399.5883.2.9481.3.3.0.0.0.0.105.253.2j1.3.0...0.0...1c.1.5UpjL3-8aC0&pbx=1&bav=on.2,or.r_gc.r_pw.r_qf.&bvm=bv.1355534169,d.Yms&fp=afcd637d8ae07bde&bpcl=40096503&biw=1600&bih=767
You might want to look into the SIFT transform.
You should take as your image the rectangle that represents a worst case guess for your bar and determine the rotation matrix for that.
See http://www.vlfeat.org/overview/sift.html
Use the StackReg plugin of ImageJ. I'm not 100% sure but I think it already comes installed with FIJI (FIJI Is Just ImageJ).
EDIT: I think I have misread your question. That is not a stack of images you are trying to fix, right? In that case, a simple approach (probably not the most efficient but definetly works), is the following algorithm:
threshold the image (seems easy, your background is always white)
get a long horizontal line as a structuring element and dilate the image with it
rotate the structuring element and keep dilating image, measuring the size of the dilation.
the angle that maximizes it, is the rotation angle you'll need to fix your image.
There are several approaches to this problem as suggested by other answers. One approach possibly similar to what you are already trying, is to use Hough transform. Hough transform is good at detecting line orientations. Combining this with morphological processing and image rotation after detecting the angle you can create a system that corrects for angular variations. The basic steps would be
Use Morphological operations to make the bar a single line blob.
Use Hough transform on this image.
Find the maximum in the transform output and use that to find orientation angle.
Use the angle to fix original image.
A full example which comes with Computer Vision System Toolbox for this method. See
http://www.mathworks.com/help/vision/examples/rotation-correction-1.html
you can try givens or householder transform, I prefer givens.
it require an angle, using cos(angle) and sin(angle) to make the givens matrix.

Cropping UIImage like camscanner

I am stuck in my application feature. I want cropping feature similar to Cam Scanner Cropping.
The screens of CAM-SCANNER are:
I have created similar crop view.
I have obtained CGPoint of four corners.
But How can I obtained cropped image in slant.
Please provide me some suggestions if possible.
This is a perspective transform problem. In this case they are plotting a 3D projection in a 2D plane.
As, the first image has selection corners in quadrilateral shape and when you transform it in a rectangular shape, then you will either need to add more pixel information(interpolation) or remove some pixels.
So now actual problem is to add additional pixel information to cropped image and project it to generate second image. It can be implemented in various ways:
<> you can implement it by your own by applying perspective tranformation matrix with interpolation.
<> you can use OpenGL .
<> you can use OpenCV.
.. and there are many more ways to implement it.
I had solved this problem using OpenCV. Following functions in OpenCV will help you to achieve this.
cvPerspectiveTransform
cvWarpPerspective
First function will calculate transformation matrix using source and destination projection coordinates. In your case src array will have values from CGPoint for all the corners. And dest will have rectangular projection points for example {(0,0)(200,0)(200,150)(0,150)}.
Once you get transformation matrix you will need to pass it to second function. you can visit this thread.
There may be few other alternatives to OpenCV library, but it has good collection of image processing algorithms.
iOS application with opencv library is available at eosgarden.
I see 2 possibilities. The first is to calculate a transformation matrix that slants the image, and installing it in the CATransform3D property of your view's layer.
That would be simple, assuming you knew how to form the transformation matrix that did the stretching. I've never learned how to construct transformation matrixes that stretch or skew images, so I can't be of any help. I'd suggest googling transformation matrixes and stretching/skewing.
The other way would be to turn the part of the image you are cropping into an OpenGL texture and map the texture onto your output. The actual texture drawing part of that would be easy, but there are about 1000 kilos of OpenGL setup to do, and a whole lot to learning in order to get anything done at all. If you want to pursue that route, I'd suggest searching for simple 2D texture examples using the new iOS 5 GLKit.
Using the code given in Link : http://www.hive05.com/2008/11/crop-an-image-using-the-iphone-sdk/
Instead of using CGRect and CGContextClipToRect Try using CGContextEOClip OR CGContextClosePath
Though i havnt tried this... But i have tried drawing closed path using CGContextClosePath on TouchesBegan and TouchesMoved and TouchesEnd events.
Hope this can give more insight to your problem...