I created a curve with several points. Now I want to delete some points based on one of their attribute (will_be_removed).
As is shown in the picture above, those points with i#will_be_removed set to 1 will be removed.
I tried using the VEX code below but it said invalid subscript for type: int.will_be_removed
if(#ptnum.will_be_removed == 1)
{
removepoint(0, #ptnum);
}
How can I correctly reference those points?
The error in this code
if(#ptnum.will_be_removed == 1)
{
removepoint(0, #ptnum);
}
is because #ptnum is a VEX type int. #ptnum can also be written i#ptnum to exlicitly indicate it's type, but since it is a well known attribute (see documentation in link) you can also write it shorthand as #ptnum.
int types are numbers, and do not contain collections of other data.
Regarding attributes, you also want to keep in mind if they are vertex, point, primitive, or detail attributes.
Attribute precedence
When two components in the same geometry have an attribute with the same name, the
attribute on the "lower level" of geometry is used, so:
Vertex attributes, which override:
Point attributes, which override:
Primitive attributes, which override:
Detail (whole geometry) attributes
or one liner wrangler will be
if (#will_be_deleted == 1) removepoint(0, #ptnum);
I think I figure out a way to do it. Use #will_be_removed instead of #ptnum.will_be_removed instead:
if(#will_be_removed == 1)
{
removepoint(0, #ptnum);
}
1.
According to the swift API design guidelines, a boolean property should read as assertions
> Uses of Boolean methods and properties should read as assertions about
the receiver when the use is nonmutating,
e.g. x.isEmpty, line1.intersects(line2).
2.
I would like to make a computed property of which type is Boolean to the existing data type.
Here is a simplified version of my code:
struct State {
var authorID: String
var myID: String
var `XXX`: Bool {
return myID == authorID
}
}
I want the property XXX to stand for whether I am author or not.
I firstly came up with the names like authorIsMe, iAmAuthor, isAuthorMe, etc. but realized that it didn’t read as assertions about the receiver.
So, what name do you think fit best for XXX? Any idea will be appreciated.
Thank you
(Please do not consider inlining the expression myID == authorID because in the original code, it is not short as above so I need the computed property)
amITheAuthor is the best property name according to me as it will clearly throw the answer & its means of use , its a suggestion you can use this as well.
I am not sure is this is correct behaviour or if its unintended. I have setup StealthFighter so that it returns a class type computed property variable called ammunition.
func globalTests() {
println("globalTests")
println("AMMUNITION: \(StealthFighter.ammunition)")
var myStealthFighter = StealthFighter()
println("MISSILES: \(myStealthFighter.missiles)")
println("AMMUNITION: \(myStealthFighter.ammunition)") // ERROR
}
class StealthFighter {
class var ammunition:Int {
return 500;
}
var missiles: Int = 5
}
When directly accessing the class StealthFighter this works fine and returns 500 as expected. But if I create and instance myStealthFighter and then try and access the class property on the instance I get the error: 'StealthFighter' does not have a member named 'ammunition' I can't find any mention of this, I am assuming from this that class properties are accessible only via the class? and not on any instances created from it? I just want to make sure I am understanding this correctly ...
EDIT:
So I have probably worded the type variable name wrong as it should probably be maxAmmunition to signify that StealthFighters can only take 500 rounds. I can see the point, if you want the maxAmmunition for the class then you ask the class.
As #Kreiri and #0x7fffffff points out it does seem that you can ask the instance what the class ammunition (or maxAmmunition) is by using dynamicType.
println("CLASS - AMMUNITION: \(StealthFighter.ammunition)")
var myStealthFighter = StealthFighter()
println("INSTA - AMMUNITION: \(myStealthFighter.dynamicType.ammunition)")
.
// OUTPUT
// CLASS - AMMUNITION: 500
// INSTA - AMMUNITION: 500
Your assumption is correct. Type variables are only meant to be accessed directly from the class. If you want to get at them from an instance, you can do so by accessing the dynamicType property on your instance, like so.
let theFighter = StealthFighter()
let missiles = theFighter.dynamicType.missiles
println(missiles)
However, I don't think that this is the correct approach for you to be taking here. Assuming that you want to have one class "StealthFighter", and possibly multiple instances of that class, each with the ability to have its own number of missiles independent of the others, you should probably make this an instance variable by simply ditching the class keyword.
dynamicType allows access instance’s runtime type as a value, so accessing class property from instance would look like this:
var myStealthFighter = StealthFighter()
myStealthFighter.dynamicType.ammunition
Works in playground, at least.
These properties are known as Type properties in swift. It should be called on its type ie class name, not on instance. Type properties holds same value across all the instances of the class just like static constant in C.
Querying and Setting Type Properties
Type properties are queried and set with dot syntax, just like instance properties. However, type properties are queried and set on the type, not on an instance of that type
Excerpt from : swift programming language
Swift 4:
var myStealthFighter = StealthFighter()
type(of: myStealthFighter).ammunition
Yes. This is a correct behaviour. These Type Properties can only be accessed over the Type and are not available on the instance itself.
In the Swift Book from Apple it is described in the section "Type Properties" (Page 205).
Swift Type Properties
“Unlike stored instance properties, you must always give stored type properties a default value. This is because the type itself does not have an initializer that can assign a value to a stored type property at initialization time"
I would like to be able to annotate my types and methods with meta-data and read those at runtime.
The language reference explains how to declare attribute usages, but is it actually possible to declare your own attributes?
Reading would require some kind of reflection mechanism, which I was not able to find in the reference at all, so the second part of the question probably is - is there reflection possible. If these features are not available in Swift, can they be done with Objective-C code (but on Swift instances and types)?
A relatively unrelated note: The decision of what has been modelled as an attribute and what has been added to the core syntax strikes me as pretty arbitrary. It feels like two different teams worked on the syntax and on some attributes. E.g. they put weak and unowned into the language as modifiers, but made #final and #lazy attributes. I believe that once they actually add access modifiers, they will probably be attributes likes final. Is all of this somehow related to Objective-C interoperability?
If we take the iBook as definitive, there appears to be no developer-facing way of creating arbitrary new attributes in the way you can in Java and .NET. I hope this feature comes in later, but for now, it looks like we're out of luck. If you care about this feature, you should file an enhancement request with Apple (Component: Swift Version: X)
FWIW, there's really not a way to do this in Objective-C either.
You can now do something like this! Check out "Property Wrappers" - https://docs.swift.org/swift-book/LanguageGuide/Properties.html
Here's an example from that page:
#propertyWrapper
struct TwelveOrLess {
private var number = 0
var wrappedValue: Int {
get { return number }
set { number = min(newValue, 12) }
}
}
struct SmallRectangle {
#TwelveOrLess var height: Int
#TwelveOrLess var width: Int
}
var rectangle = SmallRectangle()
print(rectangle.height)
// Prints "0"
rectangle.height = 10
print(rectangle.height)
// Prints "10"
rectangle.height = 24
print(rectangle.height)
// Prints "12"
I am starting studying OOP and I want to learn what constitutes a class. I am a little confused at how loosely some core elements are being used and thus adding to my confusion.
I have looked at the C++ class, the java class and I want to know enough to write my own pseudo class to help me understand.
For instance in this article I read this (.. class attribute (or class property, field, or data member)
I have seen rather well cut out questions that show that there is a difference between class property and class field for instance What is the difference between a Field and a Property in C#?
Depending on what language I am studying, is the definition of
Property
Fields
Class variables
Attributes
different from language to language?
"Fields", "class variables", and "attributes" are more-or-less the same - a low-level storage slot attached to an object. Each language's documentation might use a different term consistently, but most actual programmers use them interchangeably. (However, this also means some of the terms can be ambiguous, like "class variable" - which can be interpreted as "a variable of an instance of a given class", or "a variable of the class object itself" in a language where class objects are something you can manipulate directly.)
"Properties" are, in most languages I use, something else entirely - they're a way to attach custom behaviour to reading / writing a field. (Or to replace it.)
So in Java, the canonical example would be:
class Circle {
// The radius field
private double radius;
public Circle(double radius) {
this.radius = radius;
}
// The radius property
public double getRadius() {
return radius;
}
public void setRadius(double radius) {
// We're doing something else besides setting the field value in the
// property setter
System.out.println("Setting radius to " + radius);
this.radius = radius;
}
// The circumference property, which is read-only
public double getCircumference() {
// We're not even reading a field here.
return 2 * Math.PI * radius;
}
}
(Note that in Java, a property foo is a pair of accessor methods called getFoo() and setFoo() - or just the getter if the property is read-only.)
Another way of looking at this is that "properties" are an abstraction - a promise by an object to allow callers to get or set a piece of data. While "fields" etc. are one possible implementation of this abstraction. The values for getRadius() or getCircumference() in the above example could be stored directly, or they could be calculated, it doesn't matter to the caller; the setters might or might not have side effects; it doesn't matter to the caller.
I agree with you, there's a lot of unnecessary confusion due to the loose definitions and inconsistent use of many OO terms. The terms you're asking about are used somewhat interchangeably, but one could say some are more general than others (descending order): Property -> Attributes -> Class Variables -> Fields.
The following passages, extracted from "Object-Oriented Analysis and Design" by Grady Booch help clarify the subject. Firstly, it's important to understand the concept of state:
The state of an object encompasses all of the (usually static) properties of the object plus the current (usually dynamic) values of each of these properties. By properties, we mean the totality of the object's attributes and relationships with other objects.
OOP is quite generic regarding certain nomenclature, as it varies wildly from language to language:
The terms field (Object Pascal), instance variable (Smalltalk), member object (C++), and slot (CLOS) are interchangeable, meaning a repository for part of the state of an object. Collectively, they constitute the object's structure.
But the notation introduced by the author is precise:
An attribute denotes a part of an aggregate object, and so is used during analysis as well as design to express a singular property of the class. Using the language-independent syntax, an attribute may have a name, a class, or both, and optionally a default expression: A:C=E.
Class variable: Part of the state of a class. Collectively, the class variables of a class constitute its structure. A class variable is shared by all instances of the same class. In C++, a class variable is declared as a static member.
In summary:
Property is a broad concept used to denote a particular characteristic of a class, encompassing both its attributes and its relationships to other classes.
Attribute denotes a part of an aggregate object, and so is used during analysis as well as design to express a singular property of the class.
Class variable is an attribute defined in a class of which a single copy exists, regardless of how many instances of the class exist. So all instances of that class share its value as well as its declaration.
Field is a language-specific term for instance variable, that is, an attribute whose value is specific to each object.
I've been doing oop for more than 20 years, and I find that people often use different words for the same things. My understanding is that fields, class variables and attributes all mean the same thing. However, property is best described by the stackoverflow link that you included in your question.
Generally fields, methods, static methods, properties, attributes and class (or static variables) do not change on a language basis... Although the syntax will probably change on a per language basis, they will be function in the way you would expect across languages (expect terms like fields/data members to be used interchangably across languages)
In C#....
A field is a variable that exists for a given instance of a class.
eg.
public class BaseClass
{
// This is a field that might be different in each instance of a class
private int _field;
// This is a property that accesses a field
protected int GetField
{
get
{
return _field;
}
}
}
Fields have a "visibility" this determines what other classes can see the field, so in the above example a private field can only be used by the class that contains it, but the property accessor provides readonly access to the field by subclasses.
A property lets you get (sometimes called an accessor) or set (sometimes called a mutator) the value of field... Properties let you do a couple of things, prevent writing a field for example from outside the class, change the visibility of the field (eg private/protected/public). A mutator allows you to provide some custom logic before setting the value of a field
So properties are more like methods to get/set the value of a field but provide more functionality
eg.
public class BaseClass
{
// This is a field that might be different in each instance of a class
private int _field;
// This is a property that accesses a field, but since it's visibility
// is protected only subclasses will know about this property
// (and through it the field) - The field and property in this case
// will be hidden from other classes.
protected int GetField
{
// This is an accessor
get
{
return _field;
}
// This is a mutator
set
{
// This can perform some more logic
if (_field != value)
{
Console.WriteLine("The value of _field changed");
_field = value;
OnChanged; // Call some imaginary OnChange method
} else {
Console.WriteLine("The value of _field was not changed");
}
}
}
}
A class or static variable is a variable which is the same for all instances of a class..
So, for example, if you wanted a description for a class that description would be the same for all instance of the class and could be accessed by using the class
eg.
public class BaseClass
{
// A static (or class variable) can be accessed from anywhere by writing
// BaseClass.DESCRIPTION
public static string DESCRIPTION = "BaseClass";
}
public class TestClass
{
public void Test()
{
string BaseClassDescription = BaseClass.DESCRIPTION;
}
}
I'd be careful when using terminology relating to an attribute. In C# it is a class that can be applied to other classes or methods by "decorating" the class or method, in other context's it may simply refer to a field that a class contains.
// The functionality of this attribute will be documented somewhere
[Test]
public class TestClass
{
[TestMethod]
public void TestMethod()
{
}
}
Some languages do not have "Attributes" like C# does (see above)
Hopefully that all makes sense... Don't want to overload you!
Firstly, you need to select a language. For example, I would recommend you to select Ruby language and community. Until you select a language, you cannot escape confusion, as different communities use different terms for the same things.
For example, what is known as Module in Ruby, Java knows as abstract class. What is known as attributes in some languages, is known as instance variables in Ruby. I recommend Ruby especially for its logical and well-designed OOP system.
Write the following in a *.rb file, or on the command line in irb (interactive Ruby interpreter):
class Dog # <-- Here you define a class representing all dogs.
def breathe # <-- Here you teach your class a method: #breathe
puts "I'm breathing."
end
def speak # <-- Here you teach your class another method: #speak
puts "Bow wow!"
end
end
Now that you have a class, you can create an instance of it:
Seamus = Dog.new
You have just created an instance, a particular dog of class Dog, and stored it in the constant Seamus. Now you can play with it:
Seamus.breathe # <-- Invoking #breathe instance method of Seamus
#=> I'm breathing.
Seamus.speak # <-- Invoking #speak instance method of Seamus
#=> Bow wow!
As for your remaining terminology questions, "property" or "attribute" is understood as "variable" in Ruby, almost always an instance variable. And as for the term "data member", just forget about it. The term "field" is not really used in Ruby, and "class variable" in Ruby means something very rarely used, which you definitely don't need to know at this moment.
So, to keep the world nice and show you that OOP is really simple and painless in Ruby, let us create an attribute, or, in Ruby terminology, an instance variable of Dog class. As we know, every dog has some weight, and different dogs may have different weights. So, upon creation of a new dog, we will require the user to tell us dog's weight:
class Dog
def initialize( weight ) # <-- Defining initialization method with one argument 'weight'
#weight = weight # <-- Setting the dog's attribute (instance variable)
end
attr_reader :weight # <-- Making the dog's weight attribute visible to the world.
end
Drooly = Dog.new( 16 ) # <-- Weight now must provide weight upon initialization.
Drooly.weight # <-- Now we can ask Drooly about his weight.
#=> 16
Remember, with Ruby (or Python), things are simple.
I discovered in my question that Properties as defined in .Net are just a convenience syntax for code, and they are not tied to underlying variables at all (except for Auto-Implemented Properties, of course). So, saying "what is the difference between class property and class field" is like saying: what is the difference between a method and an attribute. No difference, one is code and the other is data. And, they need not have anything to do with each other.
It is really too bad that the same words, like "attribute" and "property", are re-used in different languages and ideologies to have starkly different meanings. Maybe someone needs to define an object-oriented language to talk about concepts in OOP? UML?
In The Class
public class ClassSample
{
private int ClassAttribute;
public int Property
{
get { return ClassAttribute; }
set { ClassAttribute = value; }
}
}
In the Program
class Program
{
static void Main(string[] args)
{
var objectSample = new ClassSample();
//Get Object Property
var GetProperty = objectSample.Property;
}
}