Matlab fourier descriptors what's wrong? - matlab

I am using Gonzalez frdescp function to get Fourier descriptors of a boundary. I use this code, and I get two totally different sets of numbers describing two identical but different in scale shapes.
So what is wrong?
im = imread('c:\classes\a1.png');
im = im2bw(im);
b = bwboundaries(im);
f = frdescp(b{1}); // fourier descriptors for the boundary of the first object ( my pic only contains one object anyway )
// Normalization
f = f(2:20); // getting the first 20 & deleting the dc component
f = abs(f) ;
f = f/f(1);
Why do I get different descriptors for identical - but different in scale - two circles?

The problem is that the frdescp code (I used this code, that should be the same as referred by you) is written also in order to center the Fourier descriptors.
If you want to describe your shape in a correct way, it is mandatory to mantain some descriptors that are symmetric with respect to the one representing the DC component.
The following image summarize the concept:
In order to solve your problem (and others like yours), I wrote the following two functions:
function descriptors = fourierdescriptor( boundary )
%I assume that the boundary is a N x 2 matrix
%Also, N must be an even number
np = size(boundary, 1);
s = boundary(:, 1) + i*boundary(:, 2);
descriptors = fft(s);
descriptors = [descriptors((1+(np/2)):end); descriptors(1:np/2)];
end
function significativedescriptors = getsignificativedescriptors( alldescriptors, num )
%num is the number of significative descriptors (in your example, is was 20)
%In the following, I assume that num and size(alldescriptors,1) are even numbers
dim = size(alldescriptors, 1);
if num >= dim
significativedescriptors = alldescriptors;
else
a = (dim/2 - num/2) + 1;
b = dim/2 + num/2;
significativedescriptors = alldescriptors(a : b);
end
end
Know, you can use the above functions as follows:
im = imread('test.jpg');
im = im2bw(im);
b = bwboundaries(im);
b = b{1};
%force the number of boundary points to be even
if mod(size(b,1), 2) ~= 0
b = [b; b(end, :)];
end
%define the number of significative descriptors I want to extract (it must be even)
numdescr = 20;
%Now, you can extract all fourier descriptors...
f = fourierdescriptor(b);
%...and get only the most significative:
f_sign = getsignificativedescriptors(f, numdescr);

I just went through the same problem with you.
According to this link, if you want invariant to scaling, make the comparison ratio-like, for example by dividing every Fourier coefficient by the DC-coefficient. f*1 = f1/f[0], f*[2]/f[0], and so on. Thus, you need to use the DC-coefficient where the f(1) in your code is not the actual DC-coefficient after your step "f = f(2:20); % getting the first 20 & deleting the dc component". I think the problem can be solved by keeping the value of the DC-coefficient first, the code after adjusted should be like follows:
% Normalization
DC = f(1);
f = f(2:20); % getting the first 20 & deleting the dc component
f = abs(f) ; % use magnitudes to be invariant to translation & rotation
f = f/DC; % divide the Fourier coefficients by the DC-coefficient to be invariant to scale

Related

Metropolis-Hastings in matlab

I am trying to use the Metropolis Hastings algorithm with a random walk sampler to simulate samples from a function $$ in matlab, but something is wrong with my code. The proposal density is the uniform PDF on the ellipse 2s^2 + 3t^2 ā‰¤ 1/4. Can I use the acceptance rejection method to sample from the proposal density?
N=5000;
alpha = #(x1,x2,y1,y2) (min(1,f(y1,y2)/f(x1,x2)));
X = zeros(2,N);
accept = false;
n = 0;
while n < 5000
accept = false;
while ~accept
s = 1-rand*(2);
t = 1-rand*(2);
val = 2*s^2 + 3*t^2;
% check acceptance
accept = val <= 1/4;
end
% and then draw uniformly distributed points checking that u< alpha?
u = rand();
c = u < alpha(X(1,i-1),X(2,i-1),X(1,i-1)+s,X(2,i-1)+t);
X(1,i) = c*s + X(1,i-1);
X(2,i) = c*t + X(2,i-1);
n = n+1;
end
figure;
plot(X(1,:), X(2,:), 'r+');
You may just want to use the native implementation of matlab mhsample.
Regarding your code, there are a few things missing:
- function alpha,
- loop variable i (it might be just n but it is not suited for indexing since it starts at zero).
And you should always allocate memory in matlab if you want to fill it dynamically, i.e. X in your case.
To expand on the suggestions by #max, the code appears to work if you change the i indices to n and replace
n = 0;
with
n = 2;
X(:,1) = [.1,.1];
It would probably be better to assign X(:,1) to random values within your accept region (using the same code you use later), and/or include a burn-in period.
Depending upon what you are going to do with this, it may also make things cleaner to evaluate the argument to sin in the f function to keep it within 0 to 2 pi (likely by shifting the value by 2 pi if it exceeds those bounds)

how to generate 64 or 128 qam in matlab

How to generate 64 or 128 QAM signal in MATLAB without making use of signal processing/Communication tool box. Is there any general method for creating higher order qams?
Let's say you want to generate a QAM for M=2^b. Then you need constellation points that form a lattice of M_I = 2^b_I by M_Q = 2^b_Q points where M = M_I*M_Q and therefore b_I+b_Q==b. Distributing evenly, we get b_I = floor(b/2); and b_Q = ceil(b/2);.
This established, you set up the lattice by forming 1-D grids for real and imaginary part and then connect them to a 2-D lattice. Like this:
b = 6;
M = 2^b; % b = 6: 64-QAM, b = 7: 128-QAM, etc.
b_I = floor(b/2);
M_I = 2^b_I;
b_Q = ceil(b/2);
M_Q = 2^b_Q;
x_I = -(M_I-1)/2:(M_I-1)/2;
x_Q = -(M_Q-1)/2:(M_Q-1)/2;
x_IQ = repmat(x_I,[M_Q,1]) + 1i*repmat(x_Q.',[1,M_I]);
x_IQ = x_IQ / sqrt((M_I^2+M_Q^2-2)/12);
Note that in R2016b, the second-to last line can be simplified to x_IQ = x_I + 1i*x_Q.'; Moreover, the last line ensures that your constellation to has average energy per symbol of 1 (note: for even b, the normalization can be simplified to sqrt((M-1)/6)).
Now, x_IQ is an array that contains all possible constellation points.
To draw random symbols, use s = x_IQ(randi(M,NSymbols,1));
Note that for odd b this script generates a rectangular QAM (e.g., for 128-QAM it is a 16x8 constellation). There are other ways to do so by placing constellation points more symmetrical. There is no unique way of doing that though so if you need one you have to specify which. Though in practice one usually uses QAM with even b.
I found the answer! If it is 64,256 or square of any number, then it can be easily generated as below.
% matlab code to generate 64 qam
m = 0; n = 0;
for k = -7:2:7
m = m+1;
for l = -7:2:7
n = n+1;
x(m,n) = k+j*l;
end
n = 0;
end

Reverse-calculating original data from a known moving average

I'm trying to estimate the (unknown) original datapoints that went into calculating a (known) moving average. However, I do know some of the original datapoints, and I'm not sure how to use that information.
I am using the method given in the answers here: https://stats.stackexchange.com/questions/67907/extract-data-points-from-moving-average, but in MATLAB (my code below). This method works quite well for large numbers of data points (>1000), but less well with fewer data points, as you'd expect.
window = 3;
datapoints = 150;
data = 3*rand(1,datapoints)+50;
moving_averages = [];
for i = window:size(data,2)
moving_averages(i) = mean(data(i+1-window:i));
end
length = size(moving_averages,2)+(window-1);
a = (tril(ones(length,length),window-1) - tril(ones(length,length),-1))/window;
a = a(1:length-(window-1),:);
ai = pinv(a);
daily = mtimes(ai,moving_averages');
x = 1:size(data,2);
figure(1)
hold on
plot(x,data,'Color','b');
plot(x(window:end),moving_averages(window:end),'Linewidth',2,'Color','r');
plot(x,daily(window:end),'Color','g');
hold off
axis([0 size(x,2) min(daily(window:end))-1 max(daily(window:end))+1])
legend('original data','moving average','back-calculated')
Now, say I know a smattering of the original data points. I'm having trouble figuring how might I use that information to more accurately calculate the rest. Thank you for any assistance.
You should be able to calculate the original data exactly if you at any time can exactly determine one window's worth of data, i.e. in this case n-1 samples in a window of length n. (In your case) if you know A,B and (A+B+C)/3, you can solve now and know C. Now when you have (B+C+D)/3 (your moving average) you can exactly solve for D. Rinse and repeat. This logic works going backwards too.
Here is an example with the same idea:
% the actual vector of values
a = cumsum(rand(150,1) - 0.5);
% compute moving average
win = 3; % sliding window length
idx = hankel(1:win, win:numel(a));
m = mean(a(idx));
% coefficient matrix: m(i) = sum(a(i:i+win-1))/win
A = repmat([ones(1,win) zeros(1,numel(a)-win)], numel(a)-win+1, 1);
for i=2:size(A,1)
A(i,:) = circshift(A(i-1,:), [0 1]);
end
A = A / win;
% solve linear system
%x = A \ m(:);
x = pinv(A) * m(:);
% plot and compare
subplot(211), plot(1:numel(a),a, 1:numel(m),m)
legend({'original','moving average'})
title(sprintf('length = %d, window = %d',numel(a),win))
subplot(212), plot(1:numel(a),a, 1:numel(a),x)
legend({'original','reconstructed'})
title(sprintf('error = %f',norm(x(:)-a(:))))
You can see the reconstruction error is very small, even using the data sizes in your example (150 samples with a 3-samples moving average).

separate 'entangled' vectors in Matlab

I have a set of three vectors (stored into a 3xN matrix) which are 'entangled' (e.g. some value in the second row should be in the third row and vice versa). This 'entanglement' is based on looking at the figure in which alpha2 is plotted. To separate the vector I use a difference based approach where I calculate the difference of one value with respect the three next values (e.g. comparing (1,i) with (:,i+1)). Then I take the minimum and store that. The method works to separate two of the three vectors, but not for the last.
I was wondering if you guys can share your ideas with me how to solve this problem (if possible). I have added my coded below.
Thanks in advance!
Problem in figures:
clear all; close all; clc;
%%
alpha2 = [-23.32 -23.05 -22.24 -20.91 -19.06 -16.70 -13.83 -10.49 -6.70;
-0.46 -0.33 0.19 2.38 5.44 9.36 14.15 19.80 26.32;
-1.58 -1.13 0.06 0.70 1.61 2.78 4.23 5.99 8.09];
%%% Original
figure()
hold on
plot(alpha2(1,:))
plot(alpha2(2,:))
plot(alpha2(3,:))
%%% Store start values
store1(1,1) = alpha2(1,1);
store2(1,1) = alpha2(2,1);
store3(1,1) = alpha2(3,1);
for i=1:size(alpha2,2)-1
for j=1:size(alpha2,1)
Alpha1(j,i) = abs(store1(1,i)-alpha2(j,i+1));
Alpha2(j,i) = abs(store2(1,i)-alpha2(j,i+1));
Alpha3(j,i) = abs(store3(1,i)-alpha2(j,i+1));
[~, I] = min(Alpha1(:,i));
store1(1,i+1) = alpha2(I,i+1);
[~, I] = min(Alpha2(:,i));
store2(1,i+1) = alpha2(I,i+1);
[~, I] = min(Alpha3(:,i));
store3(1,i+1) = alpha2(I,i+1);
end
end
%%% Plot to see if separation worked
figure()
hold on
plot(store1)
plot(store2)
plot(store3)
Solution using extrapolation via polyfit:
The idea is pretty simple: Iterate over all positions i and use polyfit to fit polynomials of degree d to the d+1 values from F(:,i-(d+1)) up to F(:,i). Use those polynomials to extrapolate the function values F(:,i+1). Then compute the permutation of the real values F(:,i+1) that fits those extrapolations best. This should work quite well, if there are only a few functions involved. There is certainly some room for improvement, but for your simple setting it should suffice.
function F = untangle(F, maxExtrapolationDegree)
%// UNTANGLE(F) untangles the functions F(i,:) via extrapolation.
if nargin<2
maxExtrapolationDegree = 4;
end
extrapolate = #(f) polyval(polyfit(1:length(f),f,length(f)-1),length(f)+1);
extrapolateAll = #(F) cellfun(extrapolate, num2cell(F,2));
fitCriterion = #(X,Y) norm(X(:)-Y(:),1);
nFuncs = size(F,1);
nPoints = size(F,2);
swaps = perms(1:nFuncs);
errorOfFit = zeros(1,size(swaps,1));
for i = 1:nPoints-1
nextValues = extrapolateAll(F(:,max(1,i-(maxExtrapolationDegree+1)):i));
for j = 1:size(swaps,1)
errorOfFit(j) = fitCriterion(nextValues, F(swaps(j,:),i+1));
end
[~,j_bestSwap] = min(errorOfFit);
F(:,i+1) = F(swaps(j_bestSwap,:),i+1);
end
Initial solution: (not that pretty - Skip this part)
This is a similar solution that tries to minimize the sum of the derivatives up to some degree of the vector valued function F = #(j) alpha2(:,j). It does so by stepping through the positions i and checks all possible permutations of the coordinates of i to get a minimal seminorm of the function F(1:i).
(I'm actually wondering right now if there is any canonical mathematical way to define the seminorm so we get our expected results... I initially was going for the H^1 and H^2 seminorms, but they didn't quite work...)
function F = untangle(F)
nFuncs = size(F,1);
nPoints = size(F,2);
seminorm = #(x,i) sum(sum(abs(diff(x(:,1:i),1,2)))) + ...
sum(sum(abs(diff(x(:,1:i),2,2)))) + ...
sum(sum(abs(diff(x(:,1:i),3,2)))) + ...
sum(sum(abs(diff(x(:,1:i),4,2))));
doSwap = #(x,swap,i) [x(:,1:i-1), x(swap,i:end)];
swaps = perms(1:nFuncs);
normOfSwap = zeros(1,size(swaps,1));
for i = 2:nPoints
for j = 1:size(swaps,1)
normOfSwap(j) = seminorm(doSwap(F,swaps(j,:),i),i);
end
[~,j_bestSwap] = min(normOfSwap);
F = doSwap(F,swaps(j_bestSwap,:),i);
end
Usage:
The command alpha2 = untangle(alpha2); will untangle your functions:
It should even work for more complicated data, like these shuffled sine-waves:
nPoints = 100;
nFuncs = 5;
t = linspace(0, 2*pi, nPoints);
F = bsxfun(#(a,b) sin(a*b), (1:nFuncs).', t);
for i = 1:nPoints
F(:,i) = F(randperm(nFuncs),i);
end
Remark: I guess if you already know that your functions will be quadratic or some other special form, RANSAC would be a better idea for larger number of functions. This could also be useful if the functions are not given with the same x-value spacing.

??? Index exceeds matrix dimensions PSD Proplem

Hey guys I am trying to find the Power Spectral Density of a .wav signal i recorded which is essentially a sine immersed in noise. The function that i have written is supposed to take records all of 1024 points in length and use it to find the Gxx of the signal by finding Gxx per record and then adding them and dividing them by the number of records better explained in the algorithm below:
a. Step through the wav file and extract the first record length (e.g. 1 to 1024 points). (Note that the record length is your new ā€œNā€, hence the frequency spacing changes in accordance with this, NOT the total length of the wav file).
b. Perform the normal PSD function on this record.
c. Store this vector.
d. Extract the next 1024 points in the wav file (e.g. 1025:2048) and perform PSD on this record.
e. Add this to the previously stored record and continue through steps c to e until you reach the end of your wav file or the total number of records you want. (Remember that total records*record length must be less than the total length of the wavfile!)
f. Divide the PSD by the number of averages (or number of records).
This is your averaged PSD
The function I created is as follows:
%Function to plot PSD
function[f1, GxxAv] = HW3_A_Fn_811003472_RCT(x,fs,NumRec)
Gxx = 0;
GxxAv = 0;
N = 1024;
df = fs/N;
f1 = 0:df:fs/2;
dt = 1/fs;
T = N*dt;
q = 0;
e = 1;
for i = 1:NumRec;
for r = (1+q):(N*e);
L = x(1+q:N*e);
M = length(L);
Xm = fft(L).*dt;
aXm = abs(Xm);
Gxx(1)=(1/T).*(aXm(1).*aXm(1));
for k = 2:(M/2);
Gxx(k) = (2/T) *(aXm(k).*(aXm(k)));
%Gxx = Gxx + Gxx1(k);
end
Gxx((M/2)+1)= (1/T)*(aXm((M/2)+1)).*(aXm((M/2)+1));
q = q+1024;
e = e+1;
%Gxx = Gxx + Gxx1((M/2)+1);
end
GxxAv = GxxAv + Gxx;
%Gxx = Gxx + Gxx1;
end
GxxAv = GxxAv/NumRec;
And the code I used to call this function is as follows:
[x,fs] = wavread('F:\Final\sem1Y3\Acoustics\sinenoise5s.wav');
[f1,GxxAv] = HW3_A_Fn_811003472_RCT(x,fs,100); %where 100 is the number of records to generated
plot(f1,GxxAv)
xlabel ('Frequency / Hz', 'fontsize', 18)
ylabel ('Amplitude Squared per Frequency / WU^2/Hz', 'fontsize', 18)
title ('Plot of the single sided PSD, using Averaging', 'fontsize', 18)
grid on
When Trying to plot this graph the following error was observed:
??? Index exceeds matrix dimensions.
Error in ==> HW3_A_Fn_811003472_RCT at 19
L = x(1+q:N*e);
Error in ==> HW3_A_3_811003472_RCT at 3
[f1,GxxAv] = HW3_A_Fn_811003472_RCT(x,fs,100); %where 100 is the number of records to generated
I am not sure how to fix it and i have tried many different methods but still i get this error. I am not too familiar with Matlab but all I really want to do for line 19 is to go like:
x(1:1024), x(1025:2048), x(2049:3072), x(3072:4096)...etc to 100 records
Any ideas??? Thanks
This is obviously homework, so I am not gonna do your work for you. But there quite some things wrong with your code. Start by fixing all of those first:
Use more appropriate function names, homework123 is not a good name to describe what the function does.
Use more appropriate variable names. More standard in this context would be nfft instead of N and n_average instead of NumRec. I don't care about the exact thing you use, but it should describe exactly what the variable does.
Your error message clearly hints that you are trying to index x in some illegal way. Start with making a loop that just prints the right indices (1..1024, 1025..2048, ...) and make sure it follows your instruction E. Only when this works as expected add the rest of the code.
you use a triple-nested for-loop. You only need a single for-loop or while-loop to solve this problem.