I am trying to implement the generalized Hough transform as presented in this paper in MATLAB. I've also tried using this document to understand the algorithm. I am stuck on figuring out how to calculate the gradient angle to find Φ to use in the R-Table.
I have tried to run this matlab implementation, but the contour function tries to access negative indices. The missing functions are below.
distance.m
function [ d ] = distance( x1, y1, x2, y2 )
d = sqrt( (x2-x1)^2 + (y2-y1)^2 );
end
barycenter.m
function [ xo, yo ] = barycenter( img )
% gravitational center coordinates of a shape
[rows, cols] = size(img);
x = ones(rows, 1)*(1:cols);
y = (1:rows)'*ones(1,cols);
area = sum(sum(img));
xo = sum(sum(double(img) .* x)) / area;
yo = sum(sum(double(img) .* y)) / area;
end
modelHough.m
function [H]=ModelHough(imgRGB)
% Generalized Hough Transform Modeling
% Image Binarization
imgBW = rgb2gray(imgRGB);
imgBI = imgBW < 255;
% Retrieving information about the contour: points and number (N)
N = contour(imgBI);
% Model initialization:
% row = beta value * 100
% column = number of the couple (alpha, distance)
% 3rd dimension: 1 = alpha, 2 = distance
H=zeros(round(100*2*pi),N,2);
% Compute of the barycenter coordinates
[ xo, yo ] = barycenter(imgBI);
% for each contour point
for i=1:N
% beta compute for ith contour point
b = beta(N, imgBI, i);
% research of the first column
k=1;
while H(b+1,k,2)~=0
k=k+1;
end
% compute of the alpha value
H(b+1, k, 1) = alpha(N, i, imgBI);
% compute of the distance value
H(b+1, k, 2) = distance( xo, yo, i, b );
end
Use a suitable edge detector. You could start off with the Sobel operator. The gradient angle is atan(Gy/Gx) as described in the wiki article.
If you use a common edge detector for detecting edges you should change countor.m on row 14 to something like below:
while (img(i,j)~=1)
Related
I would like to generate surface of revolution from bezier curve. I have made bezier curve in MATLAB but beyond this point I am stuck and do not know how to proceed. Please help.
Below is the code that I have made.
clc
clear
close all
% Name : Savla Jinesh Shantilal
% Bits ID : 2021HT30609
%% Define inout parameters
B = [1,1; 2,3; 4,3; 3,1]; % Creating matrix for polygon vertices
[r,s] = size(B); % getting size of matrix in terms of rows and columns
n = r-1; % n+1 represents number of vertices of the polygon
np = 20; % represents number of equi-distance points on the bezier curve
t = linspace(0,1,np);
%% Plot polygon
for k = 1:n
plot([B(k,1),B(k+1,1)], [B(k,2),B(k+1,2)], 'r', 'LineWidth', 2)
hold on
grid on
end
%% Generate the points on the bezier curve
for j = 1:np
P = [0,0];
for i = 0:n
M(i+1) = (factorial(n)/(factorial(i)*factorial(n-i)))*((t(j))^i)*((1-t(j))^(n-i));
P = P + B(i+1,:)*M(i+1);
end
Q(j,:) = P;
end
%% Plot the bezier curve from the obtained points
for l = 1:np-1
plot([Q(l,1),Q(l+1,1)],[Q(l,2),Q(l+1,2)], '-- b', 'LineWidth', 2);
hold on
end
Usually one can use the built-in cylinder function for monotonically increasing x-values. Here, the bezier curve has non monotonic values from max(x) so we break it to two parts to parameterize it, and then add an angle rotation.
% first define the x and y coordinate from your Q info:
xx = Q(:,1);
yy = Q(:,2);
N = 1e2;
[~, id] = max(xx); % the position where we split
t = linspace(xx(1),xx(id),N);
% Parameterize the function:
t = linspace(0,2*(xx(id)-xx(1)),N);
x = zeros(1, N);
L = t <= ( xx(id)-xx(1) ); % the "Left" side of the curve
x(L) = t(L)+xx(1);
x(~L) = flip(x(L));
%define the r value
r = x;
r(L) = interp1(xx(1:id) ,yy(1:id) , x(L) ); % Left side
r(~L) = interp1(xx(id:end),yy(id:end), x(~L)); % right side (not left)
% define your x values
x = repmat(x', [1 N]);
% define the theta that will perform the rotation
theta = linspace(0,2*pi, N);
% initialize values for y and z
y = zeros(N);
z = zeros(N);
% calculate the y and z values
for i=1:N
y(i,:) = r(i) *cos(theta);
z(i,:) = r(i) *sin(theta);
end
%plot the surface of revolution and the original curve
s = surf(x,y,z);
alpha 0.4
hold on
plot(xx,yy,'k','LineWidth',3)
I have to plot the speed vector of an object orbiting around a central body. This is a Keplerian context. The trajectory of object is deduced from the classical formula ( r = p/(1+e*cos(theta)) with e=eccentricity.
I manage into plotting the elliptical orbit but now, I would like to plot for each point of this orbit the velocity speed of object.
To compute the velocity vector, I start from classical formulas (into polar coordinates), below the 2 components :
v_r = dr/dt and v_theta = r d(theta)/dt
To take a time step dt, I extract the mean anomaly which is proportional to time.
And Finally, I compute the normalization of this speed vector.
clear % clear variables
e = 0.8; % eccentricity
a = 5; % semi-major axis
b = a*sqrt(1-e^2); % semi-minor axis
P = 10 % Orbital period
N = 200; % number of points defining orbit
nTerms = 10; % number of terms to keep in infinite series defining
% eccentric anomaly
M = linspace(0,2*pi,N); % mean anomaly parameterizes time
% M varies from 0 to 2*pi over one orbit
alpha = zeros(1,N); % preallocate space for eccentric anomaly array
%%%%%%%%%%
%%%%%%%%%% Calculations & Plotting
%%%%%%%%%%
% Calculate eccentric anomaly at each point in orbit
for j = 1:N
% initialize eccentric anomaly to mean anomaly
alpha(j) = M(j);
% include first nTerms in infinite series
for n = 1:nTerms
alpha(j) = alpha(j) + 2 / n * besselj(n,n*e) .* sin(n*M(j));
end
end
% calcualte polar coordiantes (theta, r) from eccentric anomaly
theta = 2 * atan(sqrt((1+e)/(1-e)) * tan(alpha/2));
r = a * (1-e^2) ./ (1 + e*cos(theta));
% Compute cartesian coordinates with x shifted since focus
x = a*e + r.*cos(theta);
y = r.*sin(theta);
figure(1);
plot(x,y,'b-','LineWidth',2)
xlim([-1.2*a,1.2*a]);
ylim([-1.2*a,1.2*a]);
hold on;
% Plot 2 focus = foci
plot(a*e,0,'ro','MarkerSize',10,'MarkerFaceColor','r');
hold on;
plot(-a*e,0,'ro','MarkerSize',10,'MarkerFaceColor','r');
% compute velocity vectors
for i = 1:N-1
vr(i) = (r(i+1)-r(i))/(P*(M(i+1)-M(i))/(2*pi));
vtheta(i) = r(i)*(theta(i+1)-theta(i))/(P*(M(i+1)-M(i))/(2*pi));
vrNorm(i) = vr(i)/norm([vr(i),vtheta(i)],1);
vthetaNorm(i) = vtheta(i)/norm([vr(i),vtheta(i)],1);
end
% Plot velocity vector
quiver(x(30),y(30),vrNorm(30),vthetaNorm(30),'LineWidth',2,'MaxHeadSize',1);
% Label plot with eccentricity
title(['Elliptical Orbit with e = ' sprintf('%.2f',e)]);
Unfortunately, once plot performed, it seems that I get a bad vector for speed. Here for example the 30th element of vrNorm and vthetaNorm arrays :
As you can see, the vector has the wrong direction (If I assume to take 0 for theta from the right axis and positive variation like into trigonometrics).
If someone could see where is my error, this would nice.
UPDATE 1: Has this vector representing the speed on elliptical orbit to be tangent permanently to the elliptical curve ?
I would like to represent it by taking the right focus as origin.
UPDATE 2:
With the solution of #MadPhysicist, I have modified :
% compute velocity vectors
vr(1:N-1) = (2*pi).*diff(r)./(P.*diff(M));
vtheta(1:N-1) = (2*pi).*r(1:N-1).*diff(theta)./(P.*diff(M));
% Plot velocity vector
for l = 1:9 quiver(x(20*l),y(20*l),vr(20*l)*cos(vtheta(20*l)),vr(20*l)*sin(vtheta(20*l)),'LineWidth',2,'MaxHeadSize',1);
end
% Label plot with eccentricity
title(['Elliptical Orbit with e = ' sprintf('%.2f',e)]);
I get the following result :
On some parts of the orbit, I get wrong directions and I don't understand why ...
There are two issues with your code:
The normalization is done incorrectly. norm computes the generalized p-norm for a vector, which defaults to the Euclidean norm. It expects Cartesian inputs. Setting p to 1 means that it will just return the largest element of your vector. In your case, the normalization is meaningless. Just set vrNorm as
vrNorm = vr ./ max(vr)
It appears that you are passing in the polar coordinates vrNorm and vthetaNorm to quiver, which expects Cartesian coordinates. It's easy to make the conversion in a vectorized manner:
vxNorm = vrNorm * cos(vtheta);
vyNorm = vrNorm * sin(vtheta);
This assumes that I understand where your angle is coming from correctly and that vtheta is in radians.
Note
The entire loop
for i = 1:N-1
vr(i) = (r(i+1)-r(i))/(P*(M(i+1)-M(i))/(2*pi));
vtheta(i) = r(i)*(theta(i+1)-theta(i))/(P*(M(i+1)-M(i))/(2*pi));
vrNorm(i) = vr(i)/norm([vr(i),vtheta(i)],1);
vthetaNorm(i) = vtheta(i)/norm([vr(i),vtheta(i)],1);
end
can be rewritten in a fully vectorized manner:
vr = (2 * pi) .* diff(r) ./ (P .* diff(M))
vtheta = (2 * pi) .* r .* diff(theta) ./ (P .* diff(M))
vrNorm = vr ./ max(vr)
vxNorm = vrNorm * cos(vtheta);
vyNorm = vrNorm * sin(vtheta);
Note 2
You can call quiver in a vectorized manner, on the entire dataset, or on a subset:
quiver(x(20:199:20), y(20:199:20), vxNorm(20:199:20), vyNorm(20:199:20), ...)
I want to plot the field distribution inside a circular structure with radius a.
What I expect to see are circular arrows that from the centre 0 go toward a in the radial direction like this
but I'm obtaining something far from this result. I wrote this
x_np = besselzero(n, p, 1); %toolbox from mathworks.com for the roots
R = 0.1:1:a; PHI = 0:pi/180:2*pi;
for r = 1:size(R,2)
for phi = 1:size(PHI,2)
u_R(r,phi) = -1/2*((besselj(n-1,x_np*R(1,r)/a)-besselj(n+1,x_np*R(1,r)/a))/a)*cos(n*PHI(1,phi));
u_PHI(r,phi) = n*(besselj(n,x_np*R(1,r)/a)/(x_np*R(1,r)))*sin(PHI(1,phi));
end
end
[X,Y] = meshgrid(R);
quiver(X,Y,u_R,u_PHI)
where u_R is supposed to be the radial component and u_PHI the angular component. Supposing the formulas that I'm writing are correct, do you think there is a problem with for cycles? Plus, since R and PHI are not with the same dimension (in this case R is 1x20 and PHI 1X361) I also get the error
The size of X must match the size of U or the number of columns of U.
that I hope to solve it if I figure out which is the problem with the cycles.
This is the plot that I get
The problem has to do with a difference in co-ordinate systems.
quiver expects inputs in a Cartesian co-ordinate system.
The rest of your code seems to be expressed in a polar co-ordinate system.
Here's a snippet that should do what you want. The initial parameters section is filled in with random values because I don't have besselzero or the other details of your problem.
% Define initial parameters
x_np = 3;
a = 1;
n = 1;
% Set up domain (Cartesian)
x = -a:0.1:a;
y = -a:0.1:a;
[X, Y] = meshgrid(x, y);
% Allocate output
U = zeros(size(X));
V = zeros(size(X));
% Loop over each point in domain
for ii = 1:length(x)
for jj = 1:length(y)
% Compute polar representation
r = norm([X(ii,jj), Y(ii,jj)]);
phi = atan2(Y(ii,jj), X(ii,jj));
% Compute polar unit vectors
rhat = [cos(phi); sin(phi)];
phihat = [-sin(phi); cos(phi)];
% Compute output (in polar co-ordinates)
u_R = -1/2*((besselj(n-1, x_np*r/a)-besselj(n+1, x_np*r/a))/a)*cos(n*phi);
u_PHI = n*(besselj(n, x_np*r/a)/(x_np*r))*sin(phi);
% Transform output to Cartesian co-ordinates
U(ii,jj) = u_R*rhat(1) + u_PHI*phihat(1);
V(ii,jj) = u_R*rhat(2) + u_PHI*phihat(2);
end
end
% Generate quiver plot
quiver(X, Y, U, V);
I want to plot circles in Hadamard matrix pattern of order 8,16, and 32. So far, I have a code for plotting 2D arrays of circles.
%Plotting an N by N arrays of circles
clc; clear;
n_circles = 8; % Define the number of circles to be plotted
R = 40; % Define the radius of the basic circle
Len=1024;
M=zeros(Len); % Create the hole mask
% Get the indices of the points inside the basic circle
M0 = zeros(2*R+1); % Initialize the basic mask
I = 1:(2*R+1); % Define the x and y coordinates of the basic mask
x = (I - R)-1;
y = (R - I)+1;
[X,Y] = meshgrid(x,y); % Create the mask
A = (X.^2 + Y.^2 <= R^2);
[xx,yy]=ind2sub(size(M0),find(A == true));
%plot
for ii=1:n_circles
for jj=1:n_circles
MidX=Len/2+(ii-n_circles/2-0.5)*(2*R);
MidY=Len/2+(jj-n_circles/2-0.5)*(2*R);
% [MidX MidY]
M(sub2ind(size(M),MidX+xx-R-1,MidY+yy-R-1))=1;
end
end
figure(1)
imshow(M)
I searched on how to plot a Hadamard matrix, and from the Mathworks documentation, the hadamard matrix function
H = hadamard(n)
returns the Hadamard matrix of order n. How do I incorporate this in my original code so that the final result will generate an image of circles plotted in a Hadamard pattern, where the value of 1 indicates a circle while -1 is null (absence of circle)?
Thanks,
add in th begining
H = hadamard(n_circles);
and inside the loops change to:
M(sub2ind(size(M),MidX+xx-R-1,MidY+yy-R-1))=H(ii,jj);
I have polar coordinates, radius 0.05 <= r <= 1 and 0 ≤ θ ≤ 2π. The radius r is 50 values between 0.05 to 1, and polar angle θ is 24 values between 0 to 2π.
How do I interpolate r = 0.075 and theta = pi/8?
I dunno what you have tried, but interp2 works just as well on polar data as it does on Cartesian. Here is some evidence:
% Coordinates
r = linspace(0.05, 1, 50);
t = linspace(0, 2*pi, 24);
% Some synthetic data
z = sort(rand(50, 24));
% Values of interest
ri = 0.075;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
ZI_manual =
2.737907208525297e-002
ZI_MATLAB =
2.737907208525298e-002
Based on comments you have the following information
%the test point
ri=0.53224;
ti = pi/8;
%formula fo generation of Z
g=9.81
z0=#(r)0.01*(g^2)*((2*pi)^-4)*(r.^-5).*exp(-1.25*(r/0.3).^-4);
D=#(t)(2/pi)*cos(t).^2;
z2=#(r,t)z0(r).*D(t) ;
%range of vlaues of r and theta
r=[0.05,0.071175,0.10132,0.14422,0.2053, 0.29225,0.41602,0.5922,0.84299,1.2];
t=[0,0.62832,1.2566,1.885, 2.5133,3.1416,3.7699,4.3982,5.0265,5.6549,6.2832];
and you want interplation of the test point.
When you sample some data to use them for interpolation you should consider how to sample data according to your requirements.
So when you are sampling a regular grid of polar coordinates ,those coordinates when converted to rectangular will form a circular shape that
most of the points are concentrated in the center of the cricle and when we move from the center to outer regions distance between the points increased.
%regular grid generated for r and t
[THETA R] = meshgrid(t ,r);
% Z for polar grid
Z=z2(R,THETA);
%convert coordinate from polar to cartesian(rectangular):
[X, Y] = pol2cart (THETA, R);
%plot points
plot(X, Y, 'k.');
axis equal
So when you use those point for interpolation the accuracy of the interpolation is greater in the center and lower in the outer regions where the distance between points increased.
In the other word with this sampling method you place more importance on the center region related to outer ones.
To increase accuracy density of grid points (r and theta) should be increased so if length of r and theta is 11 you can create r and theta with size 20 to increase accuracy.
In the other hand if you create a regular grid in rectangular coordinates an equal importance is given to each region . So accuracy of the interpolation will be the same in all regions.
For it first you create a regular grid in the polar coordinates then convert the grid to rectangular coordinates so you can calculate the extents (min max) of the sampling points in the rectangular coordinates. Based on this extents you can create a regular grid in the rectangular coordinates
Regular grid of rectangular coordinates then converted to polar coordinated to get z for grid points using z2 formula.
%get the extent of points
extentX = [min(X(:)) max(X(:))];
extentY = [min(Y(:)) max(Y(:))];
%sample 100 points(or more or less) inside a region specified be the extents
X_samples = linspace(extentX(1),extentX(2),100);
Y_samples = linspace(extentY(1),extentY(2),100);
%create regular grid in rectangular coordinates
[XX YY] = meshgrid(X_samples, Y_samples);
[TT RR] = cart2pol(XX,YY);
Z_rect = z2(RR,TT);
For interpolation of a test point say [ri ti] first it converted to rectangular then using XX ,YY value of z is interpolated
[xi yi] = pol2cart (ti, ri);
z=interp2(XX,YY,Z_rect,xi,yi);
If you have no choice to change how you sample the data and only have a grid of polar points as discussed with #RodyOldenhuis you can do the following:
Interpolate polar coordinates with interp2 (interpolation for gridded data)
this approach is straightforward but has the shortcoming that r and theta are not of the same scale and this may affect the accuracy of the interpolation.
z = interp2(THETA, R, Z, ti, ri)
convert polar coordinates to rectangular and then apply an interpolation method that is for scattered data.
this approach requires more computations but result of it is more reliable.
MATLAB has griddata function that given scattered points first generates a triangulation of points and then creates a regular grid on top of the triangles and interpolates values of grid points.
So if you want to interpolate value of point [ri ti] you should then apply a second interpolation to get value of the point from the interpolated grid.
With the help of some information from spatialanalysisonline and Wikipedia linear interpolation based on triangulation calculated this way (tested in Octave. In newer versions of MATLAB use of triangulation and pointLocation recommended instead of delaunay and tsearch ):
ri=0.53224;
ti = pi/8;
[THETA R] = meshgrid(t ,r);
[X, Y] = pol2cart (THETA, R);
[xi yi] = pol2cart (ti, ri);
%generate triangulation
tri = delaunay (X, Y);
%find the triangle that contains the test point
idx = tsearch (X, Y, tri, xi, yi);
pts= tri(idx,:);
%create a matrix that repesents equation of a plane (triangle) given its 3 points
m=[X(pts);Y(pts);Z(pts);ones(1,3)].';
%calculate z based on det(m)=0;
z= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
More refinement:
Since it is known that the search point is surrounded by 4 points we can use only those point for triangulation. these points form a trapezoid. Each diagonal of trapezoid forms two triangles so using vertices of the trapezoid we can form 4 triangles, also a point inside a trapezoid can lie in at least 2 triangles.
the previous method based on triangulation only uses information from one triangle but here z of the test point can be interpolated two times from data of two triangles and the calculated z values can be averaged to get a better approximation.
%find 4 points surrounding the test point
ft= find(t<=ti,1,'last');
fr= find(cos(abs(diff(t(ft+(0:1))))/2) .* r < ri,1,'last');
[T4 R4] = meshgrid(t(ft+(0:1)), r(fr+(0:1)));
[X4, Y4] = pol2cart (T4, R4);
Z4 = Z(fr+(0:1),ft+(0:1));
%form 4 triangles
tri2= nchoosek(1:4,3);
%empty vector of z values that will be interpolated from 4 triangles
zv = NaN(4,1);
for h = 1:4
pts = tri2(h,:);
% test if the point lies in the triangle
if ~isnan(tsearch(X4(:),Y4(:),pts,xi,yi))
m=[X4(pts) ;Y4(pts) ;Z4(pts); [1 1 1]].';
zv(h)= (-xi*det(m(:,2:end)) + yi*det([m(:,1) m(:,3:end)]) + det(m(:,1:end-1)))/det([m(:,1:2) m(:,end)]);
end
end
z= mean(zv(~isnan(zv)))
Result:
True z:
(0.0069246)
Linear Interpolation of (Gridded) Polar Coordinates :
(0.0085741)
Linear Interpolation with Triangulation of Rectangular Coordinates:
(0.0073774 or 0.0060992) based on triangulation
Linear Interpolation with Triangulation of Rectangular Coordinates(average):
(0.0067383)
Conclusion:
Result of interpolation related to structure of original data and the sampling method. If the sampling method matches pattern of original data result of interpolation is more accurate, so in cases that grid points of polar coordinates follow pattern of data result of interpolation of regular polar coordinate can be more reliable. But if regular polar coordinates do not match the structure of data or structure of data is such as an irregular terrain, method of interpolation based on triangulation can better represent the data.
please check this example, i used two for loops, inside for loop i used condition statement, if u comment this condition statement and run the program, u'll get correct answer, after u uncomment this condition statement and run the program, u'll get wrong answer. please check it.
% Coordinates
r = linspace(0.05, 1, 10);
t = linspace(0, 2*pi, 8);
% Some synthetic data
%z = sort(rand(50, 24));
z=zeros();
for i=1:10
for j=1:8
if r(i)<0.5||r(i)>1
z(i,j)=0;
else
z(i,j) = r(i).^3'*cos(t(j)/2);
end
end
end
% Values of interest
ri = 0.55;
ti = pi/8;
% Manually interpolate
rp = find(ri <= r, 1, 'first');
rm = find(ri >= r, 1, 'last');
tp = find(ti <= t, 1, 'first');
tm = find(ti >= t, 1, 'last');
drdt = (r(rp) - r(rm)) * (t(tp) - t(tm));
dr = [r(rp)-ri ri-r(rm)];
dt = [t(tp)-ti ti-t(tm)];
fZ = [z(rm, tm) z(rm, tp)
z(rp, tm) z(rp, tp)];
ZI_manual = (dr * fZ * dt.') / drdt
% Interpolate with MATLAB
ZI_MATLAB = interp2(r, t, z', ri, ti, 'linear')
Result:
z1 =
0.1632
ZI_manual =
0.1543
ZI_MATLAB =
0.1582