I want N points on a circle, set apart by a Euclidean distance (straight line, not around the circumference) of 50. The radius is determined by the number of points and the distance between consecutive points.
However, when I choose one of the points as a reference and calculate the distances to other points, I do not get any distance values equal to 50.
Below is my code:
N = 100; % number of points
eclddst = 50; % euclidean distance between adjacent points
r = eclddst/(2*sin(pi/N)); % radius of the circle
cord = r*exp((0:1/(N-1):1)*pi*2*1i)'; % coordinates
XCor = real(cord);
YCor = imag(cord);
N_COORD = [XCor YCor];
% taking location 3 as the reference point to check the distance between the points
DSTNT = sqrt( (N_COORD(3,1)-N_COORD(:,1)).^2 + ( N_COORD(3,2)- N_COORD(:,2)).^2)';
The distance values around the third point which I obtain are:
100.959
50.505
0.000
50.505
100.959
151.311
The points adjacent to point 3 should have 50 as their distance value and not 50.505.
Why do I get this error?
Thanks in advance.
Your issue is in the number of points which your formula generates, because of a misleading statement at the link you were following. Note that it was stated:
r = A*exp((0:1/300:1)*pi*2j); % 300 point circle, radius A
However, this will give 301 points not 300. If you plotted this though, you would see only 300 points (much easier to see if you use, say, 4 points). The first and last points are identical since
exp(0*pi*2j) = exp(1*pi*2j) = 1
To get around this, the simplest options are to change 0:1/300:1 to not reach 1, or simply create and remove an extra point as shown here:
N = 100; % number of points
d = 50; % Euclidean distance between adjacent points
% Euclidean distance around circle is essentially side length of N-sided polygon.
% Triangular sector angle within polygon (rads): 2*pi/N
% By bisecting the triangle to get a right-triangle, we can deduce that
% sin((2*pi/N)/2) = (d/2)/r => r = (d/2)/sin(pi/N)
r = (d/2)/sin(pi/N);
% Use linspace as it's clearer than colon array, create N+1 points
% Note that point 1 and point N+1 will be identical!
complexcoords = r*exp(linspace(0,1,N+1)*pi*2*1i).';
% Remove the last point as you put it in an array
coords = [real(complexcoords(1:N)) imag(complexcoords(1:N))];
As a check:
% Euclidean distances from point 3
dists = sqrt((coords(3,1)-coords(:,1)).^2 + (coords(3,2)-coords(:,2)).^2);
dists(1:5)
>> 99.951
50 % Neighbouring points are distance 50!
0
50 % Ditto
99.951
Note that you should be careful using '. This is the complex conjugate transpose, meaning that x + yi becomes x - yi. You won't notice this on a circle centred around 0 and an even number of points, but when you want to transpose something in MATLAB always use .', otherwise you may get some hard to diagnose issues! I have corrected this in my above code.
Doc links: ctranspose/', transpose/.'.
I am working on images to detect and fit the largest possible circle in any of the free areas of an image containing distributed particles:
(able to detect the location of particle).
One direction is to define a circle touching any 3-point combination, checking if the circle is empty, then finding the largest circle among all empty circles. However, it leads to a huge number of combination i.e. C(n,3), where n is the total number of particles in the image.
I would appreciate if anyone can provide me any hint or alternate method that I can explore.
Lets do some maths my friend, as maths will always get to the end!
Wikipedia:
In mathematics, a Voronoi diagram is a partitioning of a plane into
regions based on distance to points in a specific subset of the plane.
For example:
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
voronoi(x,y);
The nice thing about this diagram is that if you notice, all the edges/vertices of those blue areas are all to equal distance to the points around them. Thus, if we know the location of the vertices, and compute the distances to the closest points, then we can choose the vertex with highest distance as our center of the circle.
Interestingly, the edges of a Voronoi regions are also defined as the circumcenters of the triangles generated by a Delaunay triangulation.
So if we compute the Delaunay triangulation of the area, and their circumcenters
dt=delaunayTriangulation([x;y].');
cc=circumcenter(dt); %voronoi edges
And compute the distances between the circumcenters and any of the points that define each triangle:
for ii=1:size(cc,1)
if cc(ii,1)>0 && cc(ii,1)<5 && cc(ii,2)>0 && cc(ii,2)<5
point=dt.Points(dt.ConnectivityList(ii,1),:); %the first one, or any other (they are the same distance)
distance(ii)=sqrt((cc(ii,1)-point(1)).^2+(cc(ii,2)-point(2)).^2);
end
end
Then we have the center (cc) and radius (distance) of all possible circles that have no point inside them. We just need the biggest one!
[r,ind]=max(distance); %Tada!
Now lets plot
hold on
ang=0:0.01:2*pi;
xp=r*cos(ang);
yp=r*sin(ang);
point=cc(ind,:);
voronoi(x,y)
triplot(dt,'color','r','linestyle',':')
plot(point(1)+xp,point(2)+yp,'k');
plot(point(1),point(2),'g.','markersize',20);
Notice how the center of the circle is on one vertex of the Voronoi diagram.
NOTE: this will find the center inside [0-5],[0-5]. you can easily modify it to change this constrain. You can also try to find the circle that fits on its entirety inside the interested area (as opposed to just the center). This would require a small addition in the end where the maximum is obtained.
I'd like to propose another solution based on a grid search with refinement. It's not as advanced as Ander's or as short as rahnema1's, but it should be very easy to follow and understand. Also, it runs quite fast.
The algorithm contains several stages:
We generate an evenly-spaced grid.
We find the minimal distances of points in the grid to all provided points.
We discard all points whose distances are below a certain percentile (e.g. 95th).
We choose the region which contains the largest distance (this should contain the correct center if my initial grid is fine enough).
We create a new meshgrid around the chosen region and find distances again (this part is clearly sub-optimal, because the distances are computed to all points, including far and irrelevant ones).
We iterate the refinement within the region, while keeping an eye on the variance of the top 5% of values -> if it drops below some preset threshold we break.
Several notes:
I have made the assumption that circles cannot go beyond the scattered points' extent (i.e. the bounding square of the scatter acts as an "invisible wall").
The appropriate percentile depends on how fine the initial grid is. This will also affect the amount of while iterations, and the optimal initial value for cnt.
function [xBest,yBest,R] = q42806059
rng(1)
x=rand(1,100)*5;
y=rand(1,100)*5;
%% Find the approximate region(s) where there exists a point farthest from all the rest:
xExtent = linspace(min(x),max(x),numel(x));
yExtent = linspace(min(y),max(y),numel(y)).';
% Create a grid:
[XX,YY] = meshgrid(xExtent,yExtent);
% Compute pairwise distance from grid points to free points:
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
% Intermediate plot:
% figure(); plot(x,y,'.k'); hold on; contour(XX,YY,D); axis square; grid on;
% Remove irrelevant candidates:
D(D<prctile(D(:),95)) = NaN;
D(D > xExtent | D > yExtent | D > yExtent(end)-yExtent | D > xExtent(end)-xExtent) = NaN;
%% Keep only the region with the largest distance
L = bwlabel(~isnan(D));
[~,I] = max(table2array(regionprops('table',L,D,'MaxIntensity')));
D(L~=I) = NaN;
% surf(XX,YY,D,'EdgeColor','interp','FaceColor','interp');
%% Iterate until sufficient precision:
xExtent = xExtent(~isnan(min(D,[],1,'omitnan')));
yExtent = yExtent(~isnan(min(D,[],2,'omitnan')));
cnt = 1; % increase or decrease according to the nature of the problem
while true
% Same ideas as above, so no explanations:
xExtent = linspace(xExtent(1),xExtent(end),20);
yExtent = linspace(yExtent(1),yExtent(end),20).';
[XX,YY] = meshgrid(xExtent,yExtent);
D = reshape(min(pdist2([XX(:),YY(:)],[x(:),y(:)]),[],2),size(XX));
D(D<prctile(D(:),95)) = NaN;
I = find(D == max(D(:)));
xBest = XX(I);
yBest = YY(I);
if nanvar(D(:)) < 1E-10 || cnt == 10
R = D(I);
break
end
xExtent = (1+[-1 +1]*10^-cnt)*xBest;
yExtent = (1+[-1 +1]*10^-cnt)*yBest;
cnt = cnt+1;
end
% Finally:
% rectangle('Position',[xBest-R,yBest-R,2*R,2*R],'Curvature',[1 1],'EdgeColor','r');
The result I'm getting for Ander's example data is [x,y,r] = [0.7832, 2.0694, 0.7815] (which is the same). The execution time is about half of Ander's solution.
Here are the intermediate plots:
Contour of the largest (clear) distance from a point to the set of all provided points:
After considering distance from the boundary, keeping only the top 5% of distant points, and considering only the region which contains the largest distance (the piece of surface represents the kept values):
And finally:
You can use bwdist from Image Processing Toolbox to compute the distance transform of the image. This can be regarded as a method to create voronoi diagram that well explained in #AnderBiguri's answer.
img = imread('AbmxL.jpg');
%convert the image to a binary image
points = img(:,:,3)<200;
%compute the distance transform of the binary image
dist = bwdist(points);
%find the circle that has maximum radius
radius = max(dist(:));
%find position of the circle
[x y] = find(dist == radius);
imshow(dist,[]);
hold on
plot(y,x,'ro');
The fact that this problem can be solved using a "direct search" (as can be seen in another answer) means one can look at this as a global optimization problem. There exist various ways to solve such problems, each appropriate for certain scenarios. Out of my personal curiosity I have decided to solve this using a genetic algorithm.
Generally speaking, such an algorithm requires us to think of the solution as a set of "genes" subject to "evolution" under a certain "fitness function". As it happens, it's quite easy to identify the genes and the fitness function in this problem:
Genes: x , y, r.
Fitness function: technically, maximum area of circle, but this is equivalent to the maximum r (or minimum -r, since the algorithm requires a function to minimize).
Special constraint - if r is larger than the euclidean distance to the closest of the provided points (that is, the circle contains a point), the organism "dies".
Below is a basic implementation of such an algorithm ("basic" because it's completely unoptimized, and there is lot of room for optimizationno pun intended in this problem).
function [x,y,r] = q42806059b(cloudOfPoints)
% Problem setup
if nargin == 0
rng(1)
cloudOfPoints = rand(100,2)*5; % equivalent to Ander's initialization.
end
%{
figure(); plot(cloudOfPoints(:,1),cloudOfPoints(:,2),'.w'); hold on; axis square;
set(gca,'Color','k'); plot(0.7832,2.0694,'ro'); plot(0.7832,2.0694,'r*');
%}
nVariables = 3;
options = optimoptions(#ga,'UseVectorized',true,'CreationFcn',#gacreationuniform,...
'PopulationSize',1000);
S = max(cloudOfPoints,[],1); L = min(cloudOfPoints,[],1); % Find geometric bounds:
% In R2017a: use [S,L] = bounds(cloudOfPoints,1);
% Here we also define distance-from-boundary constraints.
g = ga(#(g)vectorized_fitness(g,cloudOfPoints,[L;S]), nVariables,...
[],[], [],[], [L 0],[S min(S-L)], [], options);
x = g(1); y = g(2); r = g(3);
%{
plot(x,y,'ro'); plot(x,y,'r*');
rectangle('Position',[x-r,y-r,2*r,2*r],'Curvature',[1 1],'EdgeColor','r');
%}
function f = vectorized_fitness(genes,pts,extent)
% genes = [x,y,r]
% extent = [Xmin Ymin; Xmax Ymax]
% f, the fitness, is the largest radius.
f = min(pdist2(genes(:,1:2), pts, 'euclidean'), [], 2);
% Instant death if circle contains a point:
f( f < genes(:,3) ) = Inf;
% Instant death if circle is too close to boundary:
f( any( genes(:,3) > genes(:,1:2) - extent(1,:) | ...
genes(:,3) > extent(2,:) - genes(:,1:2), 2) ) = Inf;
% Note: this condition may possibly be specified using the A,b inputs of ga().
f(isfinite(f)) = -genes(isfinite(f),3);
%DEBUG:
%{
scatter(genes(:,1),genes(:,2),10 ,[0, .447, .741] ,'o'); % All
z = ~isfinite(f); scatter(genes(z,1),genes(z,2),30,'r','x'); % Killed
z = isfinite(f); scatter(genes(z,1),genes(z,2),30,'g','h'); % Surviving
[~,I] = sort(f); scatter(genes(I(1:5),1),genes(I(1:5),2),30,'y','p'); % Elite
%}
And here's a "time-lapse" plot of 47 generations of a typical run:
(Where blue points are the current generation, red crosses are "insta-killed" organisms, green hexagrams are the "non-insta-killed" organisms, and the red circle marks the destination).
I'm not used to image processing, so it's just an Idea:
Implement something like a gaussian filter (blur) which transforms each particle (pixels) to a round gradiant with r=image_size (all of them overlapping). This way, you should get a picture where the most white pixels should be the best results. Unfortunately, the demonstration in gimp failed because the extreme blurring made the dots disappearing.
Alternatively, you could incrementelly extend all existing pixels by marking all neighbour pixels in an area (example: r=4), the pixels left would be the same result (those with the biggest distance to any pixel)
I would like to populate random points on a 2D plot, in such a way that the points fall in proximity of a "C" shaped polyline.
I managed to accomplish this for a rather simple square shaped "C":
This is how I did it:
% Marker color
c = 'k'; % Black
% Red "C" polyline
xl = [8,2,2,8];
yl = [8,8,2,2];
plot(xl,yl,'r','LineWidth',2);
hold on;
% Axis settings
axis equal;
axis([0,10,0,10]);
set(gca,'xtick',[],'ytick',[]);
step = 0.05; % Affects point quantity
coeff = 0.9; % Affects point density
% Top Horizontal segment
x = 2:step:9.5;
y = 8 + coeff*randn(size(x));
scatter(x,y,'filled','MarkerFaceColor',c);
% Vertical segment
y = 1.5:step:8.5;
x = 2 + coeff*randn(size(y));
scatter(x,y,'filled','MarkerFaceColor',c);
% Bottom Horizontal segment
x = 2:step:9.5;
y = 2 + coeff*randn(size(x));
scatter(x,y,'filled','MarkerFaceColor',c);
hold off;
As you can see in the code, for each segment of the polyline I generate the scatter point coordinates artificially using randn.
For the previous example, splitting the polyline into segments and generating the points manually is fine. However, what if I wanted to experiment with a more sophisticated "C" shape like this one:
Note that with my current approach, when the geometric complexity of the polyline increases so does the coding effort.
Before going any further, is there a better approach for this problem?
A simpler approach, which generalizes to any polyline, is to run a loop over the segments. For each segment, r is its length, and m is the number of points to be placed along that segment (it closely corresponds to the prescribed step size, with slight deviation in case the step size does not evenly divide the length). Note that both x and y are subject to random perturbation.
for n = 1:numel(xl)-1
r = norm([xl(n)-xl(n+1), yl(n)-yl(n+1)]);
m = round(r/step) + 1;
x = linspace(xl(n), xl(n+1), m) + coeff*randn(1,m);
y = linspace(yl(n), yl(n+1), m) + coeff*randn(1,m);
scatter(x,y,'filled','MarkerFaceColor',c);
end
Output:
A more complex example, using coeff = 0.4; and xl = [8,4,2,2,6,8];
yl = [8,6,8,2,4,2];
If you think this point cloud is too thin near the endpoints, you can artifically lengthen the first and last segments before running the loop. But I don't see the need: it makes sense that the fuzzied curve is thinning out at the extremities.
With your original approach, two places with the same distance to a line can sampled with a different probability, especially at the corners where two lines meet. I tried to fix this rephrasing the random experiment. The random experiment my code does is: "Pick a random point. Accept it with a probability of normpdf(d)<rand where d is the distance to the next line". This is a rejection sampling strategy.
xl = [8,4,2,2,6,8];
yl = [8,6,8,2,4,2];
resolution=50;
points_to_sample=200;
step=.5;
sigma=.4; %lower value to get points closer to the line.
xmax=(max(xl)+2);
ymax=(max(yl)+2);
dist=zeros(xmax*resolution+1,ymax*resolution+1);
x=[];
y=[];
for n = 1:numel(xl)-1
r = norm([xl(n)-xl(n+1), yl(n)-yl(n+1)]);
m = round(r/step) + 1;
x = [x,round(linspace(xl(n)*resolution+1, xl(n+1)*resolution+1, m*resolution))];
y = [y,round(linspace(yl(n)*resolution+1, yl(n+1)*resolution+1, m*resolution))];
end
%dist contains the lines:
dist(sub2ind(size(dist),x,y))=1;
%dist contains the normalized distance of each rastered pixel to the line.
dist=bwdist(dist)/resolution;
pseudo_pdf=normpdf(dist,0,sigma);
%scale up to have acceptance rate of 1 for most likely pixels.
pseudo_pdf=pseudo_pdf/max(pseudo_pdf(:));
sampled_points=zeros(0,2);
while size(sampled_points,1)<points_to_sample
%sample a random point
sx=rand*xmax;
sy=rand*ymax;
%accept it if criteria based on normal distribution matches.
if pseudo_pdf(round(sx*resolution)+1,round(sy*resolution)+1)>rand
sampled_points(end+1,:)=[sx,sy];
end
end
plot(xl,yl,'r','LineWidth',2);
hold on
scatter(sampled_points(:,1),sampled_points(:,2),'filled');
I have a binary image of a human. In MATLAB, boundary points and the center of the image are also defined, and they are two column matrices. Now I want to draw lines from the center to the boundary points so that I can obtain all points of intersection between these lines and the boundary of the image. How can I do that? Here is the code I have so far:
The code that is written just to get the one intersection point if anyone can help please
clear all
close all
clc
BW = im2bw(imread('C:\fyc-90_1-100.png'));
BW = imfill(BW,'holes');
[Bw m n]=preprocess(BW);
[bord sk pr_sk]=border_skeleton(BW);
boundry=bord;
L = bwlabel(BW);
s = regionprops(L, 'centroid');
centroids = cat(1, s.Centroid);
Step #1 - Generating your line
The first thing you need to do is figure out how to draw your line. To make this simple, let's assume that the centre of the human body is stored as an array of cen = [x1 y1] as you have said. Now, supposing you click anywhere in your image, you get another point linePt = [x2 y2]. Let's assume that both the x and y co-ordinates are the horizontal and vertical components respectively. We can find the slope and intercept of this line, then create points between these two points parameterized by the slope and intercept to generate your line points. One thing I will point out is that if we draw a slope with a vertical line, by definition the slope would be infinity. As such, we need to place in a check to see if we have this situation. If we do, we assume that all of the x points are the same, while y varies. Once you have your slope and intercept, simply create points in between the line. You'll have to choose how many points you want along this line yourself as I have no idea about the resolution of your image, nor how big you want the line to be. We will then store this into a variable called linePoints where the first column consists of x values and the second column consists of y values. In other words:
In other words, do this:
%// Define number of points
numPoints = 1000;
%// Recall the equation of the line: y = mx + b, m = (y2-y1)/(x2-x1)
if abs(cen(1) - linePt(1)) < 0.00001 %// If x points are close
yPts = linspace(cen(2), linePt(2), numPoints); %// y points are the ones that vary
xPts = cen(1)*ones(numPoints, 1); %//Make x points the same to make vertical line
else %// Normal case
slp = (cen(2) - linePt(2)) / cen(1) - linePt(1)); %// Solve for slope (m)
icept = cen(2) - slp*cen(1); %// Solve for intercept (b)
xPts = linspace(cen(1), linePt(1), numPoints); %// Vary the x points
yPts = slp*xPts + icept; %// Solve for the y points
end
linePoints = [xPts(:) yPts(:)]; %// Create point matrix
Step #2 - Finding points of intersection
Supposing you have a 2D array of points [x y] where x denotes the horizontal co-ordinates and y denotes the vertical co-ordinates of your line. We can simply find the distance between all of these points in your boundary with all of your points on the line. Should any of the points be under a certain threshold (like 0.0001 for example), then this indicates an intersection. Note that due to the crux of floating point data, we can't check to see if the distance is 0 due to the step size in between each discrete point in your data.
I'm also going to assume border_skeleton returns points of the same format. This method works without specifying what the centroid is. As such, I don't need to use the centroids in the method I'm proposing. Also, I'm going to assume that your line points are stored in a matrix called linePoints that is of the same type that I just talked about.
In other words, do this:
numBoundaryPoints = size(boundry, 1); %// boundary is misspelled in your code BTW
ptsIntersect = []; %// Store points of intersection here
for idx = 1 : numBoundaryPoints %// For each boundary point...
%//Obtain the i'th boundary point
pt = boundry(:,idx);
%//Get distances - This computes the Euclidean distance
%//between the i'th boundary point and all points along your line
dists = sqrt(sum(bsxfun(#minus, linePoints, pt).^2, 2));
%//Figure out which points intersect and store
ptsIntersect = [ptsIntersect; linePoints(dists < 0.0001, :)];
end
In the end, ptsIntersect will store all of the points along the boundary that intersect with this line. Take note that I have made a lot of assumptions here because you haven't (or seem reluctant to) give any more details than what you've specified in your comments.
Good luck.