Emacs / Elisp / Closure / Toggle - emacs

I currently have the following:
(defun my-hide-code ()
(interactive)
(set-selective-display 2))
(defvar my-keys-minor-mode-map (make-keymap) "my-keys-minor-mode keymap.")
(define-key my-keys-minor-mode-map (kbd "<f2>") 'my-hide-code)
(define-minor-mode my-keys-minor-mode
"use"
t " my-keys" 'my-keys-minor-mode-map)
(my-keys-minor-mode 1)
Now, I want to toggle between
(set-selective-display 2)
and
(set-selective-display 'nil)
Now, if I was in scheme, I would just create a s closure, and the closure would store a state variable, which would allow me to know which state I was in, and how to toggle.
However, Elisp is apparently a lisp-2 where variables and functions have different scope. Given this, how do I create closures / have be a toggle key?

Emacs 24 supports lexical binding, so real closures can be written.
See:
What are the new rules for variable scoping in Emacs 24?
Just be aware that dynamic binding is a very large part of what makes Emacs so customizable, so use lexical binding with due care if you are writing something which may be of use to others -- ensure that you defvar any variable which might potentially be useful for someone to override (ensuring, of course, that you think up all those potential use-cases that don't apply to you! :)
For Emacs < 24, see:
http://www.emacswiki.org/emacs/FakeClosures
Other Stack Overflow Q&As

selective-display itself is the variable that contains the state you need to check, so you can write
(defun my-toggle-selective-display ()
(interactive)
(if selective-display
(set-selective-display nil)
(set-selective-display 2)))
As for closures in general, I had need of them for a project long ago and resorted to inserting uninterned symbols into a function definition using backquote substitution to avoid global variables. E.g.
(fset 'toggler
(let ((toggle-var (make-symbol "toggle")))
(set toggle-var nil)
`(lambda () (interactive)
(cond (,toggle-var
(setq ,toggle-var nil))
(t
(setq ,toggle-var t)))
(message "toggle is %s" ,toggle-var))))
which when run produces
M-x toggler
toggle is t
M-x toggler
toggle is nil
M-x toggler
toggle is t
M-: (boundp 'toggle)
nil
I guess this qualifies as a kludge, but I know of no other way to get anything like a closure in Emacs-Lisp.

Here is a link to an answer I gave elsewhere about how to create real (not fake)
closures in Elisp:
https://stackoverflow.com/a/14088107/1857114
I use a macro I call defun****. It works in Emacs 24.2.1 but I'm not sure what
earlier versions it works for. Presumably the **defun special form will be
upgraded some time in the future and the macro will be unnecessary.

Related

Why does key binding cause Emacs to execute my function on startup?

I have a function in my Emacs init.el file that lets me rebuild and byte-compile it from a literate source file. It consists of a lambda function wrapped by defun and works exactly as I expect. So far, so good.
(defun tangle-init-and-reload ()
"Tangle the code blocks in init.org, byte-compile, and reload."
(lambda ()
(interactive)
;; Don't run hooks when tangling.
(let ((prog-mode-hook nil))
(org-babel-tangle-file (concat user-emacs-directory "init.org"))
(byte-compile-file (concat user-emacs-directory "init.el"))
(load-file user-init-file))))
When I read about functions in Elisp, it appears to me that I should be able to simply use defun to define a named function and skip the lambda, so I removed the lambda and otherwise left the function intact, like so:
(defun tangle-init-and-reload ()
"Tangle the code blocks in init.org, byte-compile, and reload."
(interactive)
;; Don't run hooks when tangling.
(let ((prog-mode-hook nil))
(org-babel-tangle-file (concat user-emacs-directory "init.org"))
(byte-compile-file (concat user-emacs-directory "init.el"))
(load-file user-init-file)))
Written this way, the function also works as expected -- as long as I call it with M-x tangle-init-and-reload RET. If I assign it a key binding, it executes on startup with one of two different side effects: With some key bindings, it attempts to overwrite init.elc while Emacs still has it open, and with others it successfully overwrites init.elc, but then re-executes on reload, causing an infinite recursion.
I'm perfectly happy to stick with the lambda version, which has no issues with key binding, but I would like to understand what magic lambda is performing and/or what it is about key binding that causes the second version to execute at startup. Can anybody explain?
For whatever it's worth, my key bindings are in a custom minor mode like so:
(defvar custom-map (make-keymap)
"Custom key bindings.")
(define-key custom-map (kbd "C-c C-i") (tangle-init-and-reload))
(define-minor-mode custom-bindings-mode
"Activates custom key bindings."
t nil custom-map)
When you define the key binding, you associate a key to a value, which in your case is:
(tangle-init-and-reload)
This is an expression that is evaluated normally, ie. you call the function when you associate the binding.
In the previous version, evaluating the same function returned a closure, you had one level of indirection, so you established a binding from a key to the function returned by the call to tangle-init-and-reload.
You can simply give the name of the function associated with the binding, by quoting it:
(define-key custom-map (kbd "C-c C-i") 'tangle-init-and-reload)

Predicate-based dynamic key binding with default fallback [duplicate]

I'm trying to write a custom tab completion implementation which tries a bunch of different completions depending on where the point is. However, if none of the conditions for completions are met I would like tab to do what ever the current mode originally intended it to do.
Something like this:
(defun my-custom-tab-completion ()
(interactive)
(cond
(some-condition
(do-something))
(some-other-condition
(do-something-else))
(t
(do-whatever-tab-is-supposed-to-do-in-the-current-mode))) ;; How do I do this?
Currently I'm checking for specific modes and doing the right thing for that mode, but I really would like a solution that just does the right thing without me having to explicitly add a condition for that specific mode.
Any ideas of how to do this?
Thanks! /Erik
BTW, here is another solution:
(define-key <map> <key>
`(menu-item "" <my-cmd> :filter ,(lambda (cmd) (if <my-predicate> cmd))))
Here is a macro I wrote based on Emacs key binding fallback to define a keybinding conditionally. It adds the keybinding to the specified minor mode but if the condition is not true, the previously assigned action is executed:
(defmacro define-key-with-fallback (keymap key def condition &optional mode)
"Define key with fallback. Binds KEY to definition DEF in keymap KEYMAP,
the binding is active when the CONDITION is true. Otherwise turns MODE off
and re-enables previous definition for KEY. If MODE is nil, tries to recover
it by stripping off \"-map\" from KEYMAP name."
`(define-key ,keymap ,key
(lambda () (interactive)
(if ,condition ,def
(let* ((,(if mode mode
(let* ((keymap-str (symbol-name keymap))
(mode-name-end (- (string-width keymap-str) 4)))
(if (string= "-map" (substring keymap-str mode-name-end))
(intern (substring keymap-str 0 mode-name-end))
(error "Could not deduce mode name from keymap name (\"-map\" missing?)"))))
nil)
(original-func (key-binding ,key)))
(call-interactively original-func))))))
Then I can do things like the following to use the special binding for TAB only when I am on a header in outline-minor-mode. Otherwise my default action (I have both indent and yasnippets) is executed:
(define-key-with-fallback outline-minor-mode-map (kbd "TAB")
(outline-cycle 1) (outline-on-heading-p))
You could use functions such as key-binding (or its more specific variants global-key-binding, minor-mode-key-binding and local-key-binding) to probe active keymaps for bindings.
For example:
(call-interactively (key-binding (kbd "TAB")))
;; in an emacs-lisp-mode buffer:
;; --> indent-for-tab-command
;;
;; in a c++-mode buffer with yas/minor-mode:
;; --> yas/expand
One way to avoid infinite loops if your command is bound to TAB could be to put your binding in a minor mode, and temporarily disable its keymap while looking for the TAB binding:
(define-minor-mode my-complete-mode
"Smart completion"
:keymap (let ((map (make-sparse-keymap)))
(define-key map (kbd "TAB") 'my-complete)
map))
(defun my-complete ()
(interactive)
(if (my-condition)
(message "my-complete")
(let ((my-complete-mode nil))
(call-interactively (key-binding (kbd "TAB"))))))
It's possible that you could achieve this without any special workarounds at all. In most modes TAB just does indentation by default, but if you set the global variable tab-always-indent to 'complete it will try to do completion first, and indent if no completion is possible. This usually works really well, although if TAB is bound to another command in one of your major modes you might be out of luck.
If that works in the modes you need, you'll just need to add your custom completion function to the front of the list completion-at-point-functions in all applicable buffers (maybe using a mode hook). The completion-at-point command calls each function listed in completion-at-point-functions until one of them returns non-nil, so all you need to do to have your custom completion function "fall through" to the existing behavior is return nil from it.
This isn't a 100% answer to the question, but if the major modes you're working with are written according to the normal guidelines it might be the cleanest way.
define-key can accept quoted string or interactive lambdas like in this example.
;Static
(define-key evil-normal-state-mapr "m" 'evil-motion-state)
;Conditional
(define-key evil-normal-state-map "m"
(lambda () (interactive) (message "%s" major-mode)))
Lambda's can be replaced with named functions like my-tab-completion and used more effectively.
From define-key's docstring (Emacs 25)
DEF is anything that can be a key's definition:
nil (means key is undefined in this keymap),
a command (a Lisp function suitable for interactive calling),
a string (treated as a keyboard macro),
a keymap (to define a prefix key),
a symbol (when the key is looked up, the symbol will stand for its
function definition, which should at that time be one of the above,
or another symbol whose function definition is used, etc.),
a cons (STRING . DEFN), meaning that DEFN is the definition
(DEFN should be a valid definition in its own right),
or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP,
or an extended menu item definition.
(See info node `(elisp)Extended Menu Items'.)

how to emulate a specific key press in Emacs Lisp

Context: I want to make a minor mode where pressing f twice fast results in whatever the pressing of ( should do at that time. This doesn't always mean just insertion of (. For example, in buffers where paredit mode or autopair mode is enabled, pressing of ( usually results in insertion of (). In a paredit mode buffer, that sometimes results in wrapping the selected text: for example, if I select a b and press (, that should result in replacing the selection with (a b).
For detection of f being pressed twice, I just need to take the logic in the short code in http://www.emacswiki.org/emacs/electric-dot-and-dash.el
So the only missing piece is a Lisp code snippet that tells Emacs "Trigger pressing of ( now!"
The first thing that came to my mind was that the snippet should do
find the command bound to the key (
and then call call-interactively on that command.
but that breaks down if the auto pairing package (autopair or paredit or other similar package) binds ( to a command that has a logic that looks up what key was used to call the command, or if the package simply relies on post-self-insert-hook or post-command-hook instead of binding (.
update
I've looked up Key Chord documentation and it turns out what I am trying to do with answers to this question has a simpler solution:
(require 'key-chord)
(key-chord-mode 1)
(defvar my-easy-open-paren-mode-map
(let ((map (make-sparse-keymap)))
(key-chord-define map ",." (kbd "("))
map))
(define-minor-mode my-easy-open-paren-mode
"In this mode, pressing . and , together is another way of pressing the open paren.")
(defvar my-easy-semicolon-mode-map
(let ((map (make-sparse-keymap)))
(key-chord-define map ";;" (kbd "C-e ;"))
map))
(define-minor-mode my-easy-semicolon-mode
"In this mode, pressing semicolon twice fast is another way of pressing C-e and semicolon.")
(add-hook 'prog-mode-hook 'my-easy-open-paren-mode)
(add-hook 'c-mode-common-hook 'my-easy-semicolon-mode)
Triggering key press may still be useful in other contexts though.
You might appreciate the Key Chord library for binding functions to a double key-press. (I wouldn't recommend using f if you'll be writing in English, mind you; but YMMV.)
post-self-insert-hook would still run if the binding was self-insert-command. post-command-hook will run in any case, but if you're worried about it seeing an incorrect function and/or input event, you can manipulate those...
After looking up the binding, your function can set this-command to the function you're about to call-interactively, and last-command-event to the required key. e.g.:
(defun my-fake-paren ()
(interactive)
(let ((command (key-binding "(")))
(setq last-command-event ?\()
(setq this-command command)
(call-interactively command)))
I use Key Chord for this sort of thing, although the page you link appears to do the same thing. The trick is getting the call to call-interactively to work correctly. I wrapped it in a let that reset the variable last-command-event, such that call-interactively thinks it was a "(". This works for me in paredit and fundamental modes.
(require 'key-chord)
(key-chord-mode 1)
(defun my-paren-call ()
(interactive)
(let ((last-command-event ?\())
(call-interactively (key-binding "("))))
(key-chord-define-global "ff" 'my-paren-call)

Elisp: Conditionally change keybinding

I'm trying to write a custom tab completion implementation which tries a bunch of different completions depending on where the point is. However, if none of the conditions for completions are met I would like tab to do what ever the current mode originally intended it to do.
Something like this:
(defun my-custom-tab-completion ()
(interactive)
(cond
(some-condition
(do-something))
(some-other-condition
(do-something-else))
(t
(do-whatever-tab-is-supposed-to-do-in-the-current-mode))) ;; How do I do this?
Currently I'm checking for specific modes and doing the right thing for that mode, but I really would like a solution that just does the right thing without me having to explicitly add a condition for that specific mode.
Any ideas of how to do this?
Thanks! /Erik
BTW, here is another solution:
(define-key <map> <key>
`(menu-item "" <my-cmd> :filter ,(lambda (cmd) (if <my-predicate> cmd))))
Here is a macro I wrote based on Emacs key binding fallback to define a keybinding conditionally. It adds the keybinding to the specified minor mode but if the condition is not true, the previously assigned action is executed:
(defmacro define-key-with-fallback (keymap key def condition &optional mode)
"Define key with fallback. Binds KEY to definition DEF in keymap KEYMAP,
the binding is active when the CONDITION is true. Otherwise turns MODE off
and re-enables previous definition for KEY. If MODE is nil, tries to recover
it by stripping off \"-map\" from KEYMAP name."
`(define-key ,keymap ,key
(lambda () (interactive)
(if ,condition ,def
(let* ((,(if mode mode
(let* ((keymap-str (symbol-name keymap))
(mode-name-end (- (string-width keymap-str) 4)))
(if (string= "-map" (substring keymap-str mode-name-end))
(intern (substring keymap-str 0 mode-name-end))
(error "Could not deduce mode name from keymap name (\"-map\" missing?)"))))
nil)
(original-func (key-binding ,key)))
(call-interactively original-func))))))
Then I can do things like the following to use the special binding for TAB only when I am on a header in outline-minor-mode. Otherwise my default action (I have both indent and yasnippets) is executed:
(define-key-with-fallback outline-minor-mode-map (kbd "TAB")
(outline-cycle 1) (outline-on-heading-p))
You could use functions such as key-binding (or its more specific variants global-key-binding, minor-mode-key-binding and local-key-binding) to probe active keymaps for bindings.
For example:
(call-interactively (key-binding (kbd "TAB")))
;; in an emacs-lisp-mode buffer:
;; --> indent-for-tab-command
;;
;; in a c++-mode buffer with yas/minor-mode:
;; --> yas/expand
One way to avoid infinite loops if your command is bound to TAB could be to put your binding in a minor mode, and temporarily disable its keymap while looking for the TAB binding:
(define-minor-mode my-complete-mode
"Smart completion"
:keymap (let ((map (make-sparse-keymap)))
(define-key map (kbd "TAB") 'my-complete)
map))
(defun my-complete ()
(interactive)
(if (my-condition)
(message "my-complete")
(let ((my-complete-mode nil))
(call-interactively (key-binding (kbd "TAB"))))))
It's possible that you could achieve this without any special workarounds at all. In most modes TAB just does indentation by default, but if you set the global variable tab-always-indent to 'complete it will try to do completion first, and indent if no completion is possible. This usually works really well, although if TAB is bound to another command in one of your major modes you might be out of luck.
If that works in the modes you need, you'll just need to add your custom completion function to the front of the list completion-at-point-functions in all applicable buffers (maybe using a mode hook). The completion-at-point command calls each function listed in completion-at-point-functions until one of them returns non-nil, so all you need to do to have your custom completion function "fall through" to the existing behavior is return nil from it.
This isn't a 100% answer to the question, but if the major modes you're working with are written according to the normal guidelines it might be the cleanest way.
define-key can accept quoted string or interactive lambdas like in this example.
;Static
(define-key evil-normal-state-mapr "m" 'evil-motion-state)
;Conditional
(define-key evil-normal-state-map "m"
(lambda () (interactive) (message "%s" major-mode)))
Lambda's can be replaced with named functions like my-tab-completion and used more effectively.
From define-key's docstring (Emacs 25)
DEF is anything that can be a key's definition:
nil (means key is undefined in this keymap),
a command (a Lisp function suitable for interactive calling),
a string (treated as a keyboard macro),
a keymap (to define a prefix key),
a symbol (when the key is looked up, the symbol will stand for its
function definition, which should at that time be one of the above,
or another symbol whose function definition is used, etc.),
a cons (STRING . DEFN), meaning that DEFN is the definition
(DEFN should be a valid definition in its own right),
or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP,
or an extended menu item definition.
(See info node `(elisp)Extended Menu Items'.)

Overload a Keybinding in Emacs

I've looked through a number of other questions and el files looking for something i could modify to suit my needs but I'm having trouble so I came to the experts.
Is there anyway to have a key behave differently depending on where in the line the cursor is?
To be more specific I'd like to map the tab key to go to the end of the line if I'm in the middle of the line but work as a tab normally would if my cursor is positioned at the beginning of the line.
So far I have braces and quotes auto-pairing and re-positioning the cursor within them for C++/Java etc. I'd like to use the tab key to end-of-line if for example a function doesn't have any arguments.
Behaving differently depending on where point is in the line is the easy bit (see (if (looking-back "^") ...) in the code). "[Working] as a tab normally would" is the harder bit, as that's contextual.
Here's one approach, but I was thinking afterwards that a more robust method would be to define a minor mode with its own binding for TAB and let that function look up the fallback binding dynamically. I wasn't sure how to do that last bit, but there's a solution right here:
Emacs key binding fallback
(defvar my-major-mode-tab-function-alist nil)
(defmacro make-my-tab-function ()
"Return a major mode-specific function suitable for binding to TAB.
Performs the original TAB behaviour when point is at the beginning of
a line, and moves point to the end of the line otherwise."
;; If we have already defined a custom function for this mode,
;; return that (otherwise that would be our fall-back function).
(or (cdr (assq major-mode my-major-mode-tab-function-alist))
;; Otherwise find the current binding for this mode, and
;; specify it as the fall-back for our custom function.
(let ((original-tab-function (key-binding (kbd "TAB") t)))
`(let ((new-tab-function
(lambda ()
(interactive)
(if (looking-back "^") ;; point is at bol
(,original-tab-function)
(move-end-of-line nil)))))
(add-to-list 'my-major-mode-tab-function-alist
(cons ',major-mode new-tab-function))
new-tab-function))))
(add-hook
'java-mode-hook
(lambda () (local-set-key (kbd "TAB") (make-my-tab-function)))
t) ;; Append, so that we run after the other hooks.
This page of Emacs Wiki lists several packages (smarttab, etc.) which make TAB do different things depending on the context. You can probably modify one of them to do what you want.