4-d Interpolation - matlab

I have a 500*4 matrix that reports an experimental result which depends on three other values (t,x,g). Something like this:
t x g result
1 2 3 3
2 2 4 2
2 2 1 3
...
I need to create a function that return the "result" for every given tuple (t,x,g) even if it is not present in the matrix. I think that I need a 4-d interpolation but I don't know how to do it in Matlab. Can someone suggest a way to do it?

Use either TriScatteredInterp or griddata3. Both will solve your problem of interpolating data points in a scattered set. If the points do not lie inside the convex hull of the data, then those methods will still fail to extrapolate, but then no method is perfect.

I think you actually need a 3-d interpolation as 3 points get mapped to to one (results).
That being said, look at interpn. It's certainly what you need

Related

How to determine the dimensions of a subplot in Matlab?

So I am writing a function that plots matrix data from n different cells. If n is 10, it should display 10 equally spaced plots on a single figure. If n is 7, it should try to space them out as equally as possible (so 3x2 or 2x3 plots with a plot by itself).
I am able to get these graphs drawn using subplot() and plot() but I'm having a hard time finding out how to initialise the dimensions for the subplot.
The number of subplots will be changing after each run so I can't initialise it to specific dimensions.
Can anyone point me in the right direction?
I am afraid problems like this tend to be messy. This normally problems like this need to be solved for different cases.
if (mod(n,2) && n<8)
% Do something
elseif (!mod(n,2) && n < 11)
% Do something else
elseif ...
....
end
The conditions are choosen a bit arbitarily since the specifications in the OP seemed a bit arbitary too. You probably understand the point and can set your own conditions.
There are two reasons why I recommend this approach.
1) This makes the code simpler to write. You do not have to come up with some complicated solution which may break in after some time.
2) By adding cases you can protect yourself against a rampant number of plots. In case the number of plots gets too large you do typically not want to have all plots in the same figure. It is also possible to wrap this into a function and apply this to X plots at a time in a loop. Typically you would want each iteration to be a separate figure.
It is not very easy to elaborate more on this since you have not yet specified how many cases you expect or what will happen to the last plot in case of odd numbers. Still this may give a good hint.
Good luck!
Another simple solution would be using round and ceil on the square root:
for n=1:20
[n, round(sqrt(n))*ceil(sqrt(n)), round(sqrt(n)), ceil(sqrt(n))]
end
output:
%(n, total_plots, x, y)
1 1 1 1
2 2 1 2
3 4 2 2
4 4 2 2
5 6 2 3
6 6 2 3
7 9 3 3
8 9 3 3
9 9 3 3
10 12 3 4
Usage example:
n = 7
subplot(round(sqrt(n)), ceil(sqrt(n)), plot_nr_x) % switch first 2 params to have either a slightly longer or slightly wider subplot
I ran into a very similar problem today and I was having a lot of trouble to define the size of the subplot that would fit everything. My reasoning is mostly a hack but it can help. If you have to represent at most n figures, you can thing as a square grid of sqrt(n) * sqrt(n). To make things better we add a safety row, so the final matrix would be (sqrt(n) + 1) * sqrt(n). I hope this helps solving your problem.
In my code have 2 nested loops:
within a loop that opens a figure for each kk element and is meant to plot a particular graph from the x position within the array.
for kk=1:length(some_file_list)
% Load data
% do some math
% get data as a cell array with things we care about in data(3,)
array_size = size(data(3,:),2);
for x=1:size(data(3,:),2);
% do more math and get things ready to plot matrix_A scaled by range_A
figure(kk); % open figure
grid_rows = round((sqrt(array_size)+1));
grid_cols = round(sqrt(array_size));
% plot
subplot(grid_rows, grid_cols, x);
imagesc(matrix_A,range_A); %plot in position
colormap(gray);
end
end

Matlab- finding the smallest deviation in a struct

I have a struct like this mesh.m_1_0.Deformation_Entformung;
the second field is a struct from m_1_0 till m_3_5 in 6 steps;
the Deformation_Entformung is a matrix with 6 columns and 325562 rows, whereby the first 3 columns contain coordinates (x,y,z).
Now I'm interested in the coordinates that are the closest to (33.5 -88.7801,-0.4480).
This is my code:
SNames = fieldnames(mesh); % SName = m_1_0,m_1_5...m_3_5
for loopIndex = 1:numel(SNames)
stuff = mesh.(SNames{loopIndex}).Deformation_Entformung;
mesh.(SNames{loopIndex}).('Deformation_Entformung_Koordi')=...
stuff(min(stuff(:,1)-33.5) & min(stuff(:,2)--88.7801) & ...
min(stuff(:,3)-0.4480), :);
end
The code runs, but the problem is that the answer is always the first row of the matrix Deformation_Entformung.
I would be glad, if someone could give me a hint.
Well, first of all you mix up indices with values.
min(stuff) returns the minimal value of stuff. So when you write stuff(min(stuff)) that's certainly not doing what you want it to do.
Secondly, if min(stuff(:,1)-33.5) would actually return an index (which it doesn't), then the index would be the same whether you searched for min(stuff(:,1)+100) or min(stuff(:,1)-500000). So the program would still not be doing what you want it to do.
Additionally, the way you are trying to search for the closest point does not even work from a mathematical point of view (even if your programming had no errors). The closest point is not necessarily the closest in each single coordinate. For example, [1 1 1] is certainly closer to [0 0 0] than [20 0 0], [0 20 0] and [0 0 20]. But it is not the closest one in each single coordinate. In fact it is not the closest one in any coordinate.
There might be even more issues with your code, but for starters you should work on how to determine distances. After you master that you should try to pick points with minimal distance. And only after you master both of these should you try to integrate everything into the rest of your stuff. No point in trying to do everything at once.

alternative to reshape or colon in matlab

I want to reduce a two dimensional matrix to row vector.
But using reshape with large matrices is really slow. The other alternative is to use colon, but i want matrix's transpose to be colon and not the matrix itself.
e.g.
A=magic(3)
A =
8 1 6
3 5 7
4 9 2
A(:) will stack up all the columns one by one. but i am looking for something like this:
AA=A(2:3,:)';
and then reshape or colon AA instead of A.
The issue is i dont want to define additional variable like AA.
Is there anyway to reduce dimension of two dimensional matrix without reshape?
You can avoid the additional variable by linear indexing. For your example:
A([2 5 8 3 6 9])
which gives
3 5 7 4 9 2
What's happening here is that you treat A as if it was already transformed into a vector, and the elements of this one-dimensional array are accessed through indices 1 through 9. Using the colon is a special case of linear indexing, A(:) is the same as A(1 : end).
Figuring out the right linear indices can be tricky, but sub2ind can help with that.
It is possible that this slightly speeds up the code, mainly because (as #Shai wrote) you avoid writing data to an intermediate variable. I wouldn't expect too much, though.
Try looking at subsref. For your example, you could use it as follows:
subsref(A',struct('type','()','subs',{{2:3,':'}}))
Update: I misunderstood the original question; I thought the OP wanted to select rows from 2:3 from the transposed A matrix keeping the columns as is. I will keep the previous answer in case it could be useful to others.
I think he/she could use the following to slice and flatten a matrix:
subsref(A(2:3,:)', struct('type','()','subs',{{':'}}))
This would give as output:
[3 5 7 4 9 2]'

Calculating value y for each XI and XII in MATLAB:

I am currently working in matlab to design a way to reconstruct 3D data. For this I have two pictures with black points. The difference in the amount of points per frame is key for the reconstruction, but MATLAB gives an error when matrixes are not equal. This is happening becaus the code is not doing what I want it to do, so can anyone hel me with the following?
I have two columns of Xdata: XLI and XRI
What matlab does when I do XLI-XRI is substracting the pairs i.e XLI(1)-XRI(1) etc, but I want to substract each value of XRI of every value of XLI. i.e
XLI(1)-XRI(1,2,3,4 etc)
XLI(2)-XRI(1 2 3 4 etc)
and so on
Can anyone help?
I think you are looking for a way to deduct all combinations from eachother. Here is an example of how you can do that with bsxfun:
xLI = [1 2 3]
xRI = [1 2]
bsxfun(#minus,xLI ,xRI')
I cannot comment on Dennis's post (not enough points on this website) : his solution should work, but depending on your version of Matlab you might get a "Error using ==> bsxfun" and need to transpose either xLI or xRI for that to work :
bsxfun(#minus,xLI' ,xRI)
Best,
Tepp

matlab percentage change between cells

I'm a newbie to Matlab and just stumped how to do a simple task that can be easily performed in excel. I'm simply trying to get the percent change between cells in a matrix. I would like to create a for loop for this task. The data is setup in the following format:
DAY1 DAY2 DAY3...DAY 100
SUBJECT RESULTS
I could only perform getting the percent change between two data points. How would I conduct it if across multiple days and multiple subjects? And please provide explanation
Thanks a bunch
FOR EXAMPLE, FOR DAY 1 SUBJECT1(RESULT=1), SUBJECT2(RESULT=4), SUBJECT3(RESULT=5), DAY 2 SUBJECT1(RESULT=2), SUBJECT2(RESULT=8), SUBJECT3(RESULT=10), DAY 3 SUBJECT1(RESULT=1), SUBJECT2(RESULT=4), SUBJECT3(RESULT=5).
I WANT THE PERCENT CHANGE SO OUTPUT WILL BE DAY 2 SUBJECT1(RESULT=100%), SUBJECT2(RESULT=100%), SUBJECT3(RESULT=100%). DAY3 SUBJECT1(RESULT=50%), SUBJECT2(RESULT=50%), SUBJECT3(RESULT=50%)
updated:
Hi thanks for responding guys. sorry for the confusion. zebediah49 is pretty close to what I'm looking for. My data is for example a 10 x 10 double. I merely wanted to get the percentage change from column to column. For example, if I want the percentage change from rows 1 through 10 on all columns (from columns 2:10). I would like the code to function for any matrix dimension (e.g., 1000 x 1000 double) zebediah49 could you explain the code you posted? thanks
updated2:
zebediah49,
(data(1:end,100)- data(1:end,99))./data(1:end,99)
output=[data(:,2:end)-data(:,1:end-1)]./data(:,1:end-1)*100;
Observing the code above, How would I go about modifying it so that column 100 is used as the index against all of the other columns(1-99)? If I change the code to the following:
(data(1:end,100)- data(1:end,:))./data(1:end,:)
matlab is unable because of exceeding matrix dimensions. How would I go about implementing that?
UPDATE 3
zebediah49,
Worked perfectly!!! Originally I created a new variable for the index and repmat the index to match the matrices which was not a good idea. It took forever to replicate when dealing with large numbers.
Thanks for you contribution once again.
Thanks Chris for your contribution too!!! I was looking more on how to address and manipulate arrays within a matrix.
It's matlab; you don't actually want a loop.
output=input(2:end,:)./input(1:end-1,:)*100;
will probably do roughly what you want. Since you didn't give anything about your matlab structure, you may have to change index order, etc. in order to make it work.
If it's not obvious, that line defines output as a matrix consisting of the input matrix, divided by the input matrix shifted right by one element. The ./ operator is important, because it means that you will divide each element by its corresponding one, as opposed to doing matrix division.
EDIT: further explanation was requested:
I assumed you wanted % change of the form 1->1->2->3->1 to be 100%, 200%, 150%, 33%.
The other form can be obtained by subtracting 100%.
input(2:end,:) will grab a sub-matrix, where the first row is cut off. (I put the time along the first dimension... if you want it the other way it would be input(:,2:end).
Matlab is 1-indexed, and lets you use the special value end to refer to the las element.
Thus, end-1 is the second-last.
The point here is that element (i) of this matrix is element (i+1) of the original.
input(1:end-1,:), like the above, will also grab a sub-matrix, except that that it's missing the last column.
I then divide element (i) by element (i+1). Because of how I picked out the sub-matrices, they now line up.
As a semi-graphical demonstration, using my above numbers:
input: [1 1 2 3 1]
input(2,end): [1 2 3 1]
input(1,end-1): [1 1 2 3]
When I do the division, it's first/first, second/second, etc.
input(2:end,:)./input(1:end-1,:):
[1 2 3 1 ]
./ [1 1 2 3 ]
---------------------
== [1.0 2.0 1.5 0.3]
The extra index set to (:) means that it will do that procedure across all of the other dimension.
EDIT2: Revised question: How do I exclude a row, and keep it as an index.
You say you tried something to the effect of (data(1:end,100)- data(1:end,:))./data(1:end,:). Matlab will not like this, because the element-by-element operators need them to be the same size. If you wanted it to only work on the 100th column, setting the second index to be 100 instead of : would do that.
I would, instead, suggest setting the first to be the index, and the rest to be data.
Thus, the data is processed by cutting off the first:
output=[data(2:end,2:end)-data(2:end,1:end-1)]./data(2:end,1:end-1)*100;
OR, (if you neglect the start, matlab assumes 1; neglect the end and it assumes end, making (:) shorthand for (1:end).
output=[data(2:,2:end)-data(2:,1:end-1)]./data(2:,1:end-1)*100;
However, you will probably still want the indices back, in which case you will need to append that subarray back:
output=[data(1,1:end-1) data(2:,2:end)-data(2:,1:end-1)]./data(2:,1:end-1)*100];
This is probably not how you should be doing it though-- keep data in one matrix, and time or whatever else in a separate array. That makes it much easier to do stuff like this to data, without having to worry about excluding time. It's especially nice when graphing.
Oh, and one more thing:
(data(:,2:end)-data(:,1:end-1))./data(:,1:end-1)*100;
is identically equivalent to
data(:,2:end)./data(:,1:end-1)*100-100;
Assuming zebediah49 guessed right in the comment above and you want
1 4 5
2 8 10
1 4 5
to turn into
1 1 1
-.5 -.5 -.5
then try this:
data = [1,4,5; 2,8,10; 1,4,5];
changes_absolute = diff(data);
changes_absolute./data(1:end-1,:)
ans =
1.0000 1.0000 1.0000
-0.5000 -0.5000 -0.5000
You don't need the intermediate variable, you can directly write diff(data)./data(1:end,:). I just thought the above might be easier to read. Getting from that result to percentage numbers is left as an exercise to the reader. :-)
Oh, and if you really want 50%, not -50%, just use abs around the final line.