PIC Microcontroller Operating System [closed] - operating-system

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
I heard it is possible to write an Operating System, using the built in bootloader and a kernel that you write, for the PIC microcontroller. I also heard it has to be a RTOS.
Is this true? Can you actually make an operating system kernel (using C/C++) for PIC?
If yes to 1, are there any examples of this?
If yes to 1, would you need any type of software to create the kernel?
Is Microchip the only company that makes PIC microcontrollers?
Can the PIC microcontroller be programmed on a mac?
Thanks!

Yes, you can write your own kernel (I have written 2 of my own). Yes you can write it in C for PIC. If you want pre-emptive scheduling, then you're going to have a real tough time avoiding assembly completely when writing the context switch. On the other hand, you can easily write a cooperative kernel purely in C (I have done this myself). (Note that creating an operating system is not a simple task... I'd get your feet wet in pure C first, then USE an OS or two, then try creating one.)
An excellent example of this is FreeRTOS. It has preexisting ports (i.e. MPLAB projects that run without any modification on the Explorer16 demo board) for PIC24F, PIC33F, and PIC32MX (as well as 20-some odd other official ports for other vendors' devices). PIC18F is supported but it's not pretty...
You only need MPLAB to create the kernel (free from Microchip). It can work interchangably with C and assembly. Depending on the processor, there are free versions of their C30 and C32 compilers to go with MPLAB.
PIC is a type of microcontroller, and is a trademark of Microchip. Many other companies make microcontrollers and call them something else (e.g. AVR, LPC, STM32).
Yes, the new version of MPLAB X is supported on Mac, Linux and Windows.

I suggest you check out FreeRTOS.

I second the vote for FreeRTOS; we use this all the time on PIC24 designs. The port works well and doesn't use a ton of memory.
Microchip supports many third party RTOSes.
Most have free demo projects that you can download, build in MPLAB, and program onto an Explorer16 board very easily. You can then experiment to your heart's content.

PIC is not a single architecture. PIC10 differs considerably from PIC24, though they and every PIC in between share some commonality. The MIPS based PIC32 on the other hand is an entirely different architecture. So you have to be clear about what PIC you are referring to.
An OS on a PIC does not have to be and RTOS, but that would be ideally suited to the application domain the devices are used in, so anything that were not real-time capable would be somewhat less useful.
There are many RTOS ports already for PIC.
There is nothing special about about a kernel scheduler in terms of development method, C and in most cases a little assembler are all that are necessary - no special tools. You could use 100% assembler if you wished, and this might be necessary to get the smallest/fastest code, but only if your assembler knowledge is better than the compiler's.
PIC is specific to Microchip, though Parallax SX is more or less a clone. Unlike ARM for example, Microchip do not licence the architecture to third-party chip manufacturers or IP providers. No one would want it in any case IMO; there are far better architectures. ARM Cortex-M is particularly suited to RTOS kernel implementation, and AVR's instruction is designed for efficient translation from C source code. Even the venerable 8051 is well suited to RTOS implementation; its eight register banks make context switches very fast (for up to eight threads), and like ARM, 8051 architecture devices are available from multiple manufacturers.

The hardware stack of PIC 18F CPU is only 31 bytes long. Other RAM memory cannot be used as stack. Even 8051 IRAM memory has 128 byte of stack. I have done RTOS for 8051, ARM and PIC 18F, and feels not good at PIC 18F. If the RAM(16K to 64K) of PIC32 can be used as stack, if the stack pointer is 16 bit long, it will be much better than PIC18F types. Does any one knows that?

Related

What is porting in RTOS [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
I recently started learning about RTOS’s and came across the subject “porting”. I always tought that I could copy the RTOS files from github, paste it in my project and use it without any problems on any device. So I am a little confused about porting. I have two questions:
What is porting in terms of RTOS?
Why do I need porting of RTOS’s?
Thanks in advance,
Arjon
Porting is the act of taking software written to run on one system and modifying it so it runs on another system. From Wikipedia,
In software engineering, porting is the process of adapting software for the purpose of achieving some form of execution in a computing environment that is different from the one that a given program (meant for such execution) was originally designed for
And,
When code is not compatible with a particular operating system or architecture, the code must be [ported] to the new system.
And,
Porting is also the term used when a video game designed to run on one platform, be it an arcade, video game console, or personal computer, is converted to run on a different platform
In other words, you have some software you want to run on a real-time operating system (RTOS). That software was not written to run on RTOS, and will fail unless it is modified accordingly. It must be ported to RTOS before it can run. If you don't port the software, it will not run on the new system.
The nature and scope of those modifications depends on the software and the specific RTOS.
An RTOS interacts directly with processor and platform hardware. When an RTOS is designed to run of different hardware, you necessarily have target specific code to adapt the generic code to the specific hardware and processor architecture.
As a minimum an RTOS requires a system timer generating an interrupt, and to perform context switch it requires direct access to the processor registers in order to restore the context, set the stack pointer for the task to switch to and effect a jump by setting the program counter - that cannot be done with generic code since it requires intimate hardware knowledge.
The "port" of an RTOS requires code written specifically for the target platform including code to handle the timer interrupt, select which timer will be used as the system timer, and effect a context switch. Often much of this code must be written in assembler for direct register access which is necessarily architecture specific.
In addition to the kernel scheduler, depending on the scope of the RTOS in terms of the services it provides, there may be code required to deal with target specific MMU/MPU support and I/O drivers for filesystems, networking etc.

Firmware Development

I want to clarify before the question that I am not an established professional programmer in any position at any firm. This is solely to satisfy curiosity, and will not pertain to any task or project at this time.
As I understand it, firmware is software placed on hardware to grant it autonomous functionality from instructions, which is given through some form of input; As long as the input stream is readable, which is made possible through drivers. Drivers are software packages with pre-written reference libraries that recognize a specific set of instructions for each possible function in the attached device.
NOTE: not quoted, so I'm aware that this could be inaccurate.
What I want to know is how firmware or drivers are placed on devices without installation through an OS or storage medium; such as a DVD or USB? Specifically firmware installed by manufacturers, like bios and keyboard drivers that are present on all computers. I'm assuming these are less or not reliant on compilation in order to function properly, which is the sole reason I'm asking this question.
Can firmware be developed without compilation?
References
Demystifying Firmware
C++ Kernel Development
Starting Firmware Development
These just explain that an OS is a type of firmware, and that firmware is primarily developed in C with Assembly and C++ as plausible alternatives; pertaining to kernel development as well.
Yes, especially in the larger components. An example involving lua is http://nodelua.org/doc/index/
However, firmware development is typically an extremely memory (and frequently CPU) constrained environment.
C (or traditionally, assembler) is often preferred because it can produce extremely small executables, and is very efficient in stack usage. This matters when you're counting memory in bytes, or kilobytes.
Using a non-compiled language means you need to include a tiny interpreter, and you might not be able to set aside enough memory for this.
You've made an edit, wherein you suggest that an "OS is a type of firmware".
This can be true, in a manner of speaking.
Often firmware itself can consist of an operating system, with components. As an example, the firmware in some home internet routers will contain an OS (which might very well be linux!), however it is still regarded as firmware. There is a bit of a grey area between a computer that is an "embedded device with firmware", vs that of a 'regular computer with regular software', but generally firmware is a computer system running in a very constrained environment, often with very specific uses.
NetBSD includes Lua in it's kernel. Many systems have been developed that do not use Assembly (except for a small part of it), C, or C++, but instead use some other language - though it is typically still compiled for size and performance reasons.
As for the actual transfer of firmware (whatever the form it may be in), this depends on the device in question.
Some devices require that the firmware be burned into the components. (In ROM, though there are various types of ROM and some can be rewritten).
Other devices require that the firmware be transferred when the device is turned on.
And yet others have SDCards or battery-backed RAM or whatever that allow storing the firmware across reboots.

what should i study to get an indepth understanding of operating systems

I have been programming in java for 3 years but I have no experience with other languages. I want to know what I need to study in order to be able to make an operating system. Am most likely going to make my operating system based on Linux kernel. What programming languages should I be familiar with and what aspects of the pc hardware should I study. if you know any online tutorials or good books please mention them.
The answer depends on how far you want to go and how much you want to write yourself vs using existing code.
The most straightforward way is to have a look at Arch Linux or Gentoo and build your own, custom Linux setup. Approximate time needed to create a minimal working system: ~2 hours
You could, otherwise, compile the Linux kernel, build some software packages and put it all together yourself and create your own Linux distro - i.e your own operating system in a sense. Linux From Scratch will be an invaluable resource if this is what you decide to do. Approximate time needed to create a minimal working system: ~2-5 days
Say that's too easy for you but you're not ready to delve into the nitty-gritty of kernel development. You can write your own applications that run on top of the Linux kernel. Typically, you'd need to know C/C++ but any language that supports running on Linux/compiling to a Linux executable will work. Heck, you could chuck a (or write your own) Java runtime on and write your whole 'operating system'/user-space in Java. Approximate time needed to create a minimal working system: ~6-12 months
What about if you want to get down to programming your own kernel from scratch? Heck, Linux is overrated and you want to write your own kernel and it's going to be the next best thing! You would want to learn a bit about the platform you're developing on. At the very least, you'll need to know the assembly instructions of some special operations for your platform that can't be done natively in C like switching CPU modes. You'll definitely need to read up on the OS dev wiki for this and you should have a fair decent computer science background.
At this point, you shouldn't need too much other than a good tutorial, C, a little assembly, reference manuals for the hardware you're hoping to support and 3+ years of computer science background to get you started. Your boot loader that's booting your kernel should handle most of the hardware initialisation. Bootloaders like GRUB (I'm assuming you're developing on a x86 system) does so much for you that it can probably just jump to your kernel main function straight away without you having to do too much. Again, if you wanted, you could port or write your own Java runtime in C and write the rest of your kernel in Java! Approximate time needed to create a minimal working system: ~3-5 years
But, let's just say you're screaming for more pain and you want to write an operating system really from scratch and you don't want no bootloader doing a lot of the legwork. What do you need? Firstly, you'll need a lot more reference manuals. And you'll need to read up on a lot more assembly. Especially for Intel processors, there's a lot of work involved bringing the system up from 16bit mode to 32/64bit protected mode with paging (which is what I assume you want). You'll also want to know about every tiny quirk and weirdness of your platform that will affect your OS (these are often not documented; hooray!). Plus, all of the above. In short, you will need to study everything. Approximate time needed to create a minimal working system: 5+ years
Of course, this post is just scraping the surface of what is needed to even bring up a basic operating system capable of say, opening a web browser. The approximates roughly assumes a minimal working system is something capable of running a graphical web browser and will vary depending on how much you want to write.
I don't mean to be condescending but this is the kind of reality you'll be facing if you decide to write your own operating system. Nevertheless, it is a valuable learning experience if you can break the initial barrier or even just trying to set up your own Linux system.
First, I would say that you install any Linux OS on your system and get accustomed with it.
Second, for OS development you have to know C language. As for the Assembly language, it depends from where you start the OS development. If you will be using available bootloaders, then I don't think that you will be requiring to learn assembly language.
This is a website on OS development: http://wiki.osdev.org/Main_Page
There you will find all the stuff you need to know for the OS development. And also how to develop OS step-by-step.
Now-a-days, a "Eudyptula Challenge" is going on. It is a series of programming exercise for the linux kernel. You can find more info here: http://eudyptula-challenge.org/

Neural Network simulator in FPGA? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
We don’t allow questions seeking recommendations for books, tools, software libraries, and more. You can edit the question so it can be answered with facts and citations.
Closed 2 years ago.
Improve this question
To learn FPGA programming, I plan to code up a simple Neural Network in FPGA (since it's massively parallel; it's one of the few things where an FPGA implementation might have a chance of being faster than a CPU implementation).
Though I'm familiar with C programming (10+ years). I'm not so sure with FPGA development stuff. Can you provide a guided list of what I should do / learn / buy?
Thanks!
Necroposting, but for others like me that come across this question there is an in-depth, though old, treatment of implementing neural networks using FPGAs
It's been three years since I posted this, but it is still being viewed so I thought I'd add another two papers from last year I recently found.
The first talks about FPGA Acceleration of Convolutional Neural Networks. Nallatech performed the work. It's more marketing that an academic paper, but still an interesting read, and might be a jumping off point for someone interesting in experimenting. I am not connected to Nallatech in any way.
The second paper came out of the University of Birmingham, UK, written by Yufeng Hao. It presents A General Neural Network Hardware Architecture on FPGA.
Most attempts at building a 'literal' neural network on an FPGA hit the routing limits very quickly, you might get a few hundred cells before P&R pulls takes longer to finish than your problem is worth waiting for. Most of the research into NN & FPGA takes this approach, concentrating on a minimal 'node' implementation and suggesting scaling is now trivial.
The way to make a reasonably sized neural network actually work is to use the FPGA to build a dedicated neural-network number crunching machine. Get your initial node values in a memory chip, have a second memory chip for your next timestamp results, and a third area to store your connectivity weights. Pump the node values and connection data through using techniques to keep the memory buses saturated (order node loads by CAS line, read-ahead using pipelines). It will take a large number of passes over the previous dataset as you pair off weights with previous values, run them through DSP MAC units to evaluate the new node weights, then push out to the result memory area once all connections evaluated. Once you have a whole timestep finished, reverse the direction of flow so the next timestep writes back to the original storage area.
I want to point out a potential issue with implementing a Neural Network in FPGA. FPGAs have limited amount of routing resources. Unlike logic resources (flops, look-up tables, memories), routing resources are difficult to quantify. Maybe a simple Neural Network will work, but a "massively parallel" one with mesh interconnects might not.
I'd suggest starting with a simple core from OpenCores.org just to get familiar with FPGA flow, and then move on to prototyping a Neural Network. Downloading free Xilinx WebPack, which includes ISIM simulator, is a good start. Later on you can purchase a cheap dev. board with a small FPGA (e.g. Xilinx Spartan 3) to run your designs on.
A neural network may not be the best starting point for learning how to program an FPGA. I would initially try something simpler like a counter driving LEDs or a numeric display and build up from there. Sites that may be of use include:
http://www.fpga4fun.com/ - Excellent examples of simple projects and some boards.
http://opencores.org/ - Very useful reference code for many interfaces, etc...
You may also like to consider using a soft processor in the FPGA to help your transition from C to VHDL or Verilog. That would allow you to move small code modules from one to the other to see the differences in hardware. The choice of language is somewhat arbitrary - I code in VHDL (syntactically similar to ADA) most of the time, but some of my colleagues prefer Verilog (syntactically similar to C). We debate it once in a while but really it's personal choice.
As for the buyers / learners guide, you need:
Patience :) - The design cycle for FPGAs is significantly longer than for software due to the number of extra 'free parameters' in the build, so don't be surprised if it takes a while to get designs working exactly the way you want.
A development board - For learning, I would buy one from one of the three bigger FPGA vendors: Xilinx, Altera or Lattice. My preference is Xilinx at the moment but all three are good. For learning, don't buy one based on the higher-end parts - you don't need to when starting using FPGAs. For Xilinx, get one based on the Spartan series such as the SP601 (I have one myself). For Altera, buy a Cyclone one. The development boards will be significantly cheaper than those for the higher-end parts.
A programming cable - Most companies produce a USB programming cable with a special connector to program the devices on the board (often using JTAG). Some boards have the programming interface built in (such as the SP601 from Xilinx) so you don't need to spend extra money on it.
Build tools - There are many varieties of these but most of the big FPGA vendors provide a solution of their own. Bear in mind that the tools are only free for the smaller lower-performance FPGAs, for example the Xilinx ISE Webpack.
The software comprises stages with which you may not be familiar having come from the software world. The specifics of the tool flow are always changing, but any tool you use should be able to get from your code to your specific device. The last part of this design flow is normally provided by the FPGA vendor because it's hardware-specific and proprietary.
To give you a brief example, the software you need should take your VHDL and Verilog code and (this is the Xilinx version):
'Synthesise' it into constructs that match the building blocks available inside your particular FPGA.
'Translate & map' the design into the part.
'Place & route' the logic in the specific device so it meets your timing requirements (e.g. the clock speed you want the design to run at).
Regardless of what Charles Stewart says, Verilog is a fine place to start. It reminds me of C, just as VHDL reminds me of ADA. No one uses Occam in industry and it isn't common in universities.
For a Verilog book, I recommend these especially Verilog HDL. Verilog does parallel work trivially, unlike C.
To buy, get a relatively cheap Cyclone III eval board from [Altera] or Altera's 3 (e.g. this Cyclone III one with NIOS for $449 or this for $199) or Xilinx.
I'll give you yet a third recommendation: Use VHDL. Yes, on the surface it looks like ADA. While Verilog bears a passing resemblance to C. However, with Verilog you only get the types that come with it out of the box. With VHDL you can define your own new types which lets you program at a higher level (still RTL, of course). I'm pretty sure the Xilinx and Altera free tools support both VHDL and Verilog. "A Designers Guide to VHDL" by Ashenden is a good VHDL book.
VHDL has a standard fixed-point math package which can make NN implementation easier.
It's old, because I haven't thought much about FPGAs in nearly 20 years, and it uses a concurrent programming language that is rather obscure, but Page & Luk, 1991, Compiling Occam into FPGAs covers some crucial topics in a nice way, enough, I think, for your purposes. Two links for trying stuff out:
KRoC is an actively maintained, linux-based Occam compiler, which I know has an active user base.
Roger Peel has a logic synthesis page that has some documentation of his linux-based workflow from Occam code synthesis through to FPGA I/O.
Occam->FPGA isn't where the action is, but it may be a much better place to start than, say, Verilog.
I would recommend looking into xilinx high-level synthesis, especially if you are coming from a C background. It abstracts away the technical details in using a hdl so the designer can focus on the algorithmic implementation.
The are restriction in the type of C code you can write. For example, you can't use dynamically sized data structures, as that would infer dynamically sized hardware.

Developing an operating system for the x86 architecture [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 7 years ago.
Improve this question
I am planning to develop an operating system for the x86 architecture.
What options of programming languages do I have?
What types of compilers are there available, preferably on a Windows environment?
Are there any good sources that will help me learn more about operating system development?
Is it better to test my operating system on a Virtual Machine or on physical hardware?
Any suggestions?
For my final year project in collage I developed a small x86 OS with a virtual memory manager, a virtual file system and fully preemptive multitasking. I made it open source and the code is heavily commented, check out its source forge page at:
https://github.com/stephenfewer/NoNameOS
From my experience I can recommend the following:
You will need x86 assembly language for various parts, this in unavoidable, but can be kept to a minimum. Fairly quickly you will get running C code, which is a proven choice for OS development. Once you have some sort of memory manager available you can go into C++ if you like (you need some kind of memory manager for things like new and delete).
No matter what language you choose you will still need assembly & C to bring a system from boot where the BIOS leaves you into any useable form.
Ultimately, the primary language you choose will depend on the type of OS you want to develop.
My development environment was the Windows port of the GNU development tools DJGPP along with the NASM assembler. For my IDE I used IBM's Eclipse with the CDT plugin which provides a C/C++ development environment within Eclipse.
For testing I recommend BOCHS, an open source x86 PC emulator. It lets you boot up your OS quickly which is great for testing and can be integrated into eclipse so you can build and run your OS at the push of a button. I would also recommend using both VMWare and a physical PC occasionally as you can pick up on some subtle bugs that way.
P.S. OS development is really fun but is very intensive, mine took the best part of 12 months. My advice is to plan well and your design is key! enjoy :)
Language and compiler depend entirely on what you're attempting to accomplish. I would suggest, though, that you might be approaching the problem from too low a level.
There are materials out there on operating system fundamentals. MIT has OpenCourseware on the subject. Read through Andrew Tannenbaum's Operating Systems series, and look at things like Minix.
Get an idea for what's out there. Start tinkering with things. Borrow ideas, and see where they go. You can reinvent the wheel if you really want, but you'll learn more by building on the works of others.
It doesn't really matter, what language you choose. If the language is Turing-complete, then you can write an OS in it.
However, the expressiveness of the language will make certain kinds of designs very easy or very hard to implement. For example, the "liveliness" and dynamism of the old Smalltalk OSs depends on the fact that they are implemented in Smalltalk. You could do that in C, too, but it would probably be so hard that you wouldn't even think about it. JavaScript or Ruby OTOH would probably be a great fit.
Microsoft Research's Singularity is another example. It simply couldn't be implemented in anything other than Sing#, Spec# and C# (or similar languages), because so much of the architecture is dependent on the static type safety and static verifiability of those languages.
One thing to keep in mind: the design space for OSs implemented in C is pretty much fully explored. There's literally thousands of them. In other languages, however, you might actually discover something that nobody has discovered before! There's only about a dozen or so OSs written in Java, about half a dozen in C#, something on the order of two OSs in Haskell, only one in Python and none in Ruby or JavaScript.
Try writing an OS in Erlang or Io, and see how that influences your thinking about Operating Systems!
There is an OS course offered at the University of Maryland that utilizes GeekOS. This is a small, extensively commented OS designed for educational purposes which can be run using the Bochs or QEMU emulators.
For an example of how it is used in a course, check out a previous offering of the course at the class webpage. There, you will find assignments where you have to add different functionality to GeekOS.
Its a great way to get familiar with a small and simple OS that runs on the x86 architecture.
You might want to look up XINU. it's a tiny OS for x86 that isn't really used for anything other than to be dissected by students.
Use ANSI C, and start off with an emulator.
When you port over to a real machine, there will be some assembler code. Context switching and interrupt handling (for instance) is easier to write in assembler.
Andy Tannenbaum has written a good book on OS. Many other good ones exist.
Good luck! There is nothing quite like haveing written your own OS, however small.
Also check out the OSDev.org which have all information you need to get started.
I've done that once for a 386SX, which was on a PCI board. A good source on how to start a X86 cpu in protected mode is the source code of linux. It's just a few assembly statements. After that you can use gcc to compile your C code. The result is objectcode in ELF format. I wrote my own linker, to make a program out of the objectcode. And yes, it worked! Good luck.
Be sure to check out the answers to my question:
How to get started in operating system development
Without a doubt, I'd use Ada. It's the best general-purpose systems-programming language I have come across, bar none. One example, Ada's much better for specifying bit layout of objects in a record than C. Ada also supports overlaying records on specific memory locations. C requires you to play with pointers to acheive the same effect. That works, but is more error-prone. Ada also has language support for interrupts.
Another: Safety. Ada defaults to bound checking array assignments, but allows you to turn it off when you need it. C "defaults" to no bound checking on arrays,so you have to do it yourself manually whenever you want it. Time has shown that this is not the right default. You will forget one where it is needed. Buffer overflow exploits are the single most common security flaw used by crackers. They have whole websites explainng how to find and use them.
As for learning about doing this, the two books I'm aware of are XINU (Unix backwards, nothing to do with Scientology), and Project Oberon. The first was used in my Operating Systems graduate course, and the second was written by Nikalus Wirth, creator of Pascal.
If you are making a full OS, you will need to use a range of languages. I would expect Assembly, C and C++ at the very least.
I would use a Virtual Machine for most of the testing.
C most probably...all major OS-es have been written in C/C++ or Objective-C(Apple)
If you want write an OS then you need a couple of people. A OS can not write a single people. I think it is better to work on existing OS projects
Reactos --> C, Assembler
SharpOS --> C#
JNode --> Java
This is only a short list of OS projects. How you can see there is a project for every possible language.