How much optimization does Scala's pattern matcher perform? - scala

Suppose I have a Scala match expression
foo match {
case Bar(Some(x)) => /* do something */
case Bar(None) => /* do something else */
}
How much optimization does the compiler do when it compiles the expression? In particular, does it emit multiple calls to Bar.unapply, or does it make a single call and match multiple times on the result?

You can check this yourself with a little code:
object Bar {
def unapply(x: Int): Option[Option[Int]] = {
println("Checking: " + x)
Some(None)
}
}
1 match {
case Bar(Some(x)) => println("do something")
case Bar(None) => println("do something else")
}
When you run it, you get:
Checking: 1
do something else
So it looks like Scala is not doing multiple calls to Bar.unapply even though the code looks like there would be multiple calls. This is good from the standpoint of efficiency, but you should probably avoid side-effects in your unapply methods that rely on them getting called multiple times per match-statement.
If you were worried about when the optimization happens and making it clear to the reader that the unapply is only being called once, you could split up the matches quite easily:
1 match {
case Bar(y) => y match {
case Some(x) => println("do something")
case None => println("do something else")
}
}

Related

Scala patternmatching: do nothing for some cases

I have to perform some actions based on cases in a pattern matching block, but only for selective cases, and nothing to be done for remaining. So is it ok to just return () for remaining cases? Something like this:
val x = ....
val y = ....
(x, y) match {
case (Some(number), Some(text)) => {
......
}
case (Some(number), None) => {
......
}
case (_, _) => () // do nothing
}
Depends what you mean by "ok". If you are asking if it will compile, you can easily answer that question yourself, by running a few snippets in a REPL and find out, that you don't even need to return a unit. Something like this works just fine:
"foo" match {
"bar" => "baz"
"bat" => 1500
_ =>
}
If however by "ok" you meant whether it is a good idea, then the answer is "probably not". As mentioned in the comments, this is not type-safe and also purely side-effecting and not referentially transparent. There is likely a better way to do what you want.
It's generally ok, if all the cases in a match result in Unit (spelled () in Scala), to have a case result in () to preserve exhaustivity.
That said, in this case, where you require the first Option to be defined to do anything, I would probably express this as:
x.foreach { number =>
y match {
case Some(text) =>
??? // note that { } aren't required in match and ??? is idiomatic for "some code here"
case None =>
???
}
}
Then again, I particularly dislike pattern matching on Option, so ymmv.

How to check if function is partial in Scala?

I have a method that receives a function, but that function may be partial, in such case I don't want it to fail with MatchError.
def doSomething[X,Y](opt:Option[X])(f:X=>Y)={
f match {
case p:PartialFunction[X,Y]=> opt.flatMap(p.lift) //This doesn't seem to work
case _ => opt.map(f)
}
}
That way I can use the method like this
doSomething(x){
case t if predicate(t) => otherMethod(t)
}
so in case I don't have a predicate, I can use it like
this doSomething(x)(otherMethod) instead of
doSoemthing(x){
case t=> otherMethod(t)
}
Note: Looking for a solution that doesn't require catching MatchError exceptions
This isn't an answer because I don't think that what you want is possible in Scala.
The original method is fine and works as expected, though it could be a bit simpler:
def doSomething[X, Y](opt: Option[X])(f: X => Y): Option[Y] = {
f match {
case p: PartialFunction[X, Y] => opt.collect(p)
case _ => opt.map(f)
}
}
The problem is here:
doSomething(x){
case t if predicate(t) => otherMethod(t)
}
Scala is creating a Function rather than a PartialFunction from that match expression so the test is failing. If you pass a real PartialFunction the method works OK.
val p: PartialFunction[Int, Int] = {
case i: Int if i > 0 => i
}
doSomething(Some(0))(p) // Returns None
I don't think there is any way of doing what you want, mainly because doSomething has multiple argument lists which messes up type deduction for the second argument list.
My suggestion is just to use
x.map(f)
or
x.collect{
case ...
}
as appropriate in the calling code.
The syntax for partial function has been changed since 2.9 per SLS 8.5, so that even you do { case x => y}, it DOES NOT mean it is a partial function. Its type will be exact as you define it as.
In your case, you defined it as X=>Y (as in your function parameter), so it is just a X=>Y (it got compiled into a regular function, and non match cases will throw MatchError), and even you do isInstanceOf[PartialFunciton[_,_]], it won't match.
To make your scenario work, you can just simply cast the passed function as PartialFunction, like:
doSomething(Some(1))({case 2 => 0}: PartialFunction[Int,Int]) //This returns None without MatchError
while
doSomething(Some(1)){case 2 => 0} //This gives MatchError and it is not recognized as PartialFunction inside the body
This is probably not as convenient as you thought it is, but it is the only way to make it work. (or you define 2 separate functions for either case, like collect and map in standard library)
I'm not sure what you are passing as a Partial Function, but definitely you should have to define it with specific signature like this:
val positive: PartialFunction[Int, Option[Int]] = {
case x if x >= 0 => Some(x)
case _ => None
The positive function is defined only for positive numbers. In case of negative numbers, the function returns None and you won't get scala.MatchError in runtime.
This specific function enables you to access to isDefinedAt method which is testing dynamically if a value is in the domain of the function.
postive(5).isDefinedAt // true
poistive.isInstanceOf[PartialFunction[Int, Option[Int]]] // true
I demonstrated here why you are always getting false when you check p.isInstanceOf
def doSomething[X,Y](opt:Option[X])(f:X=>Y)={
f match {
case p if p.isInstanceOf[PartialFunction[X,Y]] =>
println("I'm a pf")
println(s"Is it PartialFunction: ${p.isInstanceOf[PartialFunction[X,Y]]}")
opt.map(p)
case _ =>
println("I'm not a pf")
opt.map(f)
}
}
doSomething[Int, Option[Int]](Some(5))(positive) // partial function case
doSomething[Int, String](Some(5)) { // tricky case
case s => s.toString
}
You can play with it here:

Is there a way to match everything but a certain type (or set of types) without using isInstnaceOf?

I know that you can match a set of types like so, without using isInstanceOf:
x match {
case fooBar # (_: Foo | _: Bar) => ???
}
But, is there a way to match anything but a set of types? Like, match any x which is not a Foo or a Bar, without using isInstanceOf?
Well, you can do
x match {
case fooBar #(_: Foo | _: Bar) => // do nothing
default => // do something
}
Anyway, the only difference with using isInstanceOf is syntax, as you will be performing a runtime check nonetheless.
From a functional point of view, the combo isInstanceOf/asInstanceOf is identical to type matching.
So (if you really must) I would just go with
if (!(x.isInstanceOf[Foo] || x.isInstanceOf[Bar])) {
// do something
}
Again, there's no practical difference and they're both quite a hacky way of dealing with types. Unless you're working with an external API you have not control over, I would suggest to change your design and avoid matching on the types.
Usually type classes come in handy, but without further details it's hard to tell for sure.
The solution above by #GabrielePetronella work well for most cases, but I'm adding another variant that can help with some edge cases.
Edge case example:
composed Receive functions for akka actors.
consider the following:
override def receive: Receive = handleFoo orElse handleBar
def handleFoo: Receive = {
case FooObject => …
case FooClass(value) => …
case notFoo =>
logger.debug(s"wasn't expecting $notFoo of type ${notFoo.getClass.getSimpleName}")
}
def handleBar: Receive = {
case _: VeryImportantBarMsg => …
case _: LessImportantBarMsg => …
}
The last case of handleFoo will catch everything, making the orElse handleBar obsolete, and obviously we don't handle VeryImportantBarMsg or LessImportantBarMsg any more.
Solution:
use a specialized extractor object, e.g:
object NotBar {
def unapply[T](t: T): Option[T] = t match {
case _: VeryImportantBarMsg | _: LessImportantBarMsg => None
case _ => Some(t)
}
}
and use it like:
def handleFoo: Receive = {
case FooObject => …
case FooClass(value) => …
case NotBar(notFoo) =>
logger.debug(s"wasn't expecting $notFoo of type ${notFoo.getClass.getSimpleName}")
}
This solution is intended for case where you don't want the match to succeed, like partial functions, akka receive, or if you find yourself writing the same excluded list of types _: T1 | … | _: T10 many times, etc'...
P.S.
If you find yourself in need of this solution, most likely something isn't modeled optimally. In most cases, this can be avoided.

Pattern matching using current object

I'm trying to match an Option, and test to see if it's a Some containing the object making the call. So the code I want to write looks like this:
methodReturningOption() match {
case Some(this) => doSomething()
case _ => doSomethingElse()
}
but that fails to compile, with the error
'.' expected but ')' found
I also tried using Some(`this`) which gives the error
not found: value this
I can make it work if I add a variable which refers to this
val This = this
methodReturningOption() match {
case Some(This) => doSomething()
case _ => doSomethingElse()
}
but that looks ugly and seems like an unpleasant workaround. Is there an easier way to pattern match with this as an argument?
I suppose you could try this:
methodReturningOption() match {
case Some(x) if x == this => doSomething()
case _ => doSomethingElse()
}
It looks like this is considered a special keyword and can't be used in that context.
Jack Leow's solution is probably the best - I'd recommend going with that since it's much more explicit. However as an alternative you can also create a variable point to 'this' using the following syntax. (Note the self => on the first line)
class Person { self =>
def bla() = methodReturningOption() match {
case Some(`self`) => ???
case _ => ???
}
}
This doesn't really answer the question, it's just a potential alternative syntax that may be useful to you.

Scala: short form of pattern matching that returns Boolean

I found myself writing something like this quite often:
a match {
case `b` => // do stuff
case _ => // do nothing
}
Is there a shorter way to check if some value matches a pattern? I mean, in this case I could just write if (a == b) // do stuff, but what if the pattern is more complex? Like when matching against a list or any pattern of arbitrary complexity. I'd like to be able to write something like this:
if (a matches b) // do stuff
I'm relatively new to Scala, so please pardon, if I'm missing something big :)
This is exactly why I wrote these functions, which are apparently impressively obscure since nobody has mentioned them.
scala> import PartialFunction._
import PartialFunction._
scala> cond("abc") { case "def" => true }
res0: Boolean = false
scala> condOpt("abc") { case x if x.length == 3 => x + x }
res1: Option[java.lang.String] = Some(abcabc)
scala> condOpt("abc") { case x if x.length == 4 => x + x }
res2: Option[java.lang.String] = None
The match operator in Scala is most powerful when used in functional style. This means, rather than "doing something" in the case statements, you would return a useful value. Here is an example for an imperative style:
var value:Int = 23
val command:String = ... // we get this from somewhere
command match {
case "duplicate" => value = value * 2
case "negate" => value = -value
case "increment" => value = value + 1
// etc.
case _ => // do nothing
}
println("Result: " + value)
It is very understandable that the "do nothing" above hurts a little, because it seems superflous. However, this is due to the fact that the above is written in imperative style. While constructs like these may sometimes be necessary, in many cases you can refactor your code to functional style:
val value:Int = 23
val command:String = ... // we get this from somewhere
val result:Int = command match {
case "duplicate" => value * 2
case "negate" => -value
case "increment" => value + 1
// etc.
case _ => value
}
println("Result: " + result)
In this case, you use the whole match statement as a value that you can, for example, assign to a variable. And it is also much more obvious that the match statement must return a value in any case; if the last case would be missing, the compiler could not just make something up.
It is a question of taste, but some developers consider this style to be more transparent and easier to handle in more real-world examples. I would bet that the inventors of the Scala programming language had a more functional use in mind for match, and indeed the if statement makes more sense if you only need to decide whether or not a certain action needs to be taken. (On the other hand, you can also use if in the functional way, because it also has a return value...)
This might help:
class Matches(m: Any) {
def matches[R](f: PartialFunction[Any, R]) { if (f.isDefinedAt(m)) f(m) }
}
implicit def any2matches(m: Any) = new Matches(m)
scala> 'c' matches { case x: Int => println("Int") }
scala> 2 matches { case x: Int => println("Int") }
Int
Now, some explanation on the general nature of the problem.
Where may a match happen?
There are three places where pattern matching might happen: val, case and for. The rules for them are:
// throws an exception if it fails
val pattern = value
// filters for pattern, but pattern cannot be "identifier: Type",
// though that can be replaced by "id1 # (id2: Type)" for the same effect
for (pattern <- object providing map/flatMap/filter/withFilter/foreach) ...
// throws an exception if none of the cases match
value match { case ... => ... }
There is, however, another situation where case might appear, which is function and partial function literals. For example:
val f: Any => Unit = { case i: Int => println(i) }
val pf: PartialFunction[Any, Unit] = { case i: Int => println(i) }
Both functions and partial functions will throw an exception if called with an argument that doesn't match any of the case statements. However, partial functions also provide a method called isDefinedAt which can test whether a match can be made or not, as well as a method called lift, which will turn a PartialFunction[T, R] into a Function[T, Option[R]], which means non-matching values will result in None instead of throwing an exception.
What is a match?
A match is a combination of many different tests:
// assign anything to x
case x
// only accepts values of type X
case x: X
// only accepts values matches by pattern
case x # pattern
// only accepts a value equal to the value X (upper case here makes a difference)
case X
// only accepts a value equal to the value of x
case `x`
// only accept a tuple of the same arity
case (x, y, ..., z)
// only accepts if extractor(value) returns true of Some(Seq()) (some empty sequence)
case extractor()
// only accepts if extractor(value) returns Some something
case extractor(x)
// only accepts if extractor(value) returns Some Seq or Tuple of the same arity
case extractor(x, y, ..., z)
// only accepts if extractor(value) returns Some Tuple2 or Some Seq with arity 2
case x extractor y
// accepts if any of the patterns is accepted (patterns may not contain assignable identifiers)
case x | y | ... | z
Now, extractors are the methods unapply or unapplySeq, the first returning Boolean or Option[T], and the second returning Option[Seq[T]], where None means no match is made, and Some(result) will try to match result as described above.
So there are all kinds of syntactic alternatives here, which just aren't possible without the use of one of the three constructions where pattern matches may happen. You may able to emulate some of the features, like value equality and extractors, but not all of them.
Patterns can also be used in for expressions. Your code sample
a match {
case b => // do stuff
case _ => // do nothing
}
can then be expressed as
for(b <- Some(a)) //do stuff
The trick is to wrap a to make it a valid enumerator. E.g. List(a) would also work, but I think Some(a) is closest to your intended meaning.
The best I can come up with is this:
def matches[A](a:A)(f:PartialFunction[A, Unit]) = f.isDefinedAt(a)
if (matches(a){case ... =>}) {
//do stuff
}
This won't win you any style points though.
Kim's answer can be “improved” to better match your requirement:
class AnyWrapper[A](wrapped: A) {
def matches(f: PartialFunction[A, Unit]) = f.isDefinedAt(wrapped)
}
implicit def any2wrapper[A](wrapped: A) = new AnyWrapper(wrapped)
then:
val a = "a" :: Nil
if (a matches { case "a" :: Nil => }) {
println("match")
}
I wouldn't do it, however. The => }) { sequence is really ugly here, and the whole code looks much less clear than a normal match. Plus, you get the compile-time overhead of looking up the implicit conversion, and the run-time overhead of wrapping the match in a PartialFunction (not counting the conflicts you could get with other, already defined matches methods, like the one in String).
To look a little bit better (and be less verbose), you could add this def to AnyWrapper:
def ifMatch(f: PartialFunction[A, Unit]): Unit = if (f.isDefinedAt(wrapped)) f(wrapped)
and use it like this:
a ifMatch { case "a" :: Nil => println("match") }
which saves you your case _ => line, but requires double braces if you want a block instead of a single statement... Not so nice.
Note that this construct is not really in the spirit of functional programming, as it can only be used to execute something that has side effects. We can't easily use it to return a value (therefore the Unit return value), as the function is partial — we'd need a default value, or we could return an Option instance. But here again, we would probably unwrap it with a match, so we'd gain nothing.
Frankly, you're better off getting used to seeing and using those match frequently, and moving away from this kind of imperative-style constructs (following Madoc's nice explanation).