Needed tutorial on FANUC GCODE - cnc

G-code is a language for controlling CNC machines (lathes, mills).
I have a university assignment that I need conceptual help with. The part of the job that I am having problems with is writing two short programs in G-code (Fanuc corporation dialect). I have a short list of keywords and an example program, but that doesn't seem to be enough to to learn the language.
From my search of the net, I found that the various dialects of G-code are not compatible. However, I found no one tutorial on this specific one.
Also, automatically generating code for the given problems doesn't seem to be an option, since I suspect I will be asked to explain the inner workings of the programs, when presenting them. Furthermore, teachers at my university seem to insist very strongly on doing things Their way, so ... I guess I'll just have to learn the damn thing.
Q: Where can I find a concise (I want to spend no more than 2-3 days on the whole thing) tutorial for the Fanuc dialect of G-code?

I would suggest to take a look at LinuxCNC command lists here or here, as well as a concise version here on CAMotics page. Some special points for Fanuc-compatible controls (e.g. Haas, Mach3):
You can have comments inside the parentheses. Basically anything inside (...) will not be executed.
You can have parameters / variables. For example you can assign float value of 12.3 to variable slot 101 by #101 = 12.3
You can call those variables, For example X#101 is equal to X12.3
You may have mathematical expressions and then store the value in another variable slot. For example #3 = [#1 + #2], however you can't have X = [#1 + #2] or X[#1 + #2].
You may find more in depth information here in this article by Benjamin Jurke.

Related

Convert MIndiGolog fluents to the IndiGolog causes_val format

I am using Eclipse (version: Kepler Service Release 1) with Prolog Development Tool (PDT) plug-in for Prolog development in Eclipse. Used these installation instructions: http://sewiki.iai.uni-bonn.de/research/pdt/docs/v0.x/download.
I am working with Multi-Agent IndiGolog (MIndiGolog) 0 (the preliminary prolog version of MIndiGolog). Downloaded from here: http://www.rfk.id.au/ramblings/research/thesis/. I want to use MIndiGolog because it represents time and duration of actions very nicely (I want to do temporal planning), and it supports planning for multiple agents (including concurrency).
MIndiGolog is a high-level programming language based on situation calculus. Everything in the language is exactly according to situation calculus. This however does not fit with the project I'm working on.
This other high-level programming language, Incremental Deterministic (Con)Golog (IndiGolog) (Download from here: http://sourceforge.net/p/indigolog/code/ci/master/tree/) (also made with Prolog), is also (loosly) based on situation calculus, but uses fluents in a very different way. It makes use of causes_val-predicates to denote which action changes which fluent in what way, and it does not include the situation in the fluent!
However, this is what the rest of the team actually wants. I need to rewrite MIndiGolog so that it is still an offline planner, with the nice representation of time and duration of actions, but with the causes_val predicate of IndiGolog to change the values of the fluents.
I find this extremely hard to do, as my knowledge in Prolog and of situation calculus only covers the basics, but they see me as the expert. I feel like I'm in over my head and could use all the help and/or advice I can get.
I already removed the situations from my fluents, made a planning domain with causes_val predicates, and tried to add IndiGolog code into MIndiGolog. But with no luck. Running the planner just returns "false." And I can make little sense of the trace, even when I use the GUI-tracer version of the SWI-Prolog debugger or when I try to place spy points as strategically as possible.
Thanks in advance,
Best, PJ
If you are still interested (sounds like you might not be): this isn't actually very hard.
If you look at Reiter's book, you will find that causes_vals are just effect axioms, while the fluents that mention the situation are usually successor-state-axioms. There is a deterministic way to convert from the former to the latter, and the correct interpretation of the causes_vals is done in the implementation of regression. This is always the same, and you can just copy that part of Prolog code from indiGolog to your flavor.

What are "not so well defined problems" that LISP is supposed to solve?

Most people agree that LISP helps to solve problems that are not well defined, or that are not fully understood at the beginning of the project.
"Not fully understood"" might indicate that we don't know what problem we are trying to solve, so the developer refines the problem domain continuously. But isn't this process language independent?
All this refinement does not take away the need for, say, developing algorithms/solutions for the final problem that does need to be solved. And that is the actual work.
So, I'm not sure what advantage LISP provides if the developer has no idea where he's going i.e. solving a problem that is not finalised yet.
Lisp (not "LISP") has a number of advantages when you're facing problems that are not well-defined. First of all, you have a REPL where you can quickly experiment with -- that helps in sketching out quick functions and trying to play with them, leading to a very rapid development cycle. Second, having a dynamically typed language is working well in this context too: with a statically typed language you need to "design more" before you begin, and changing the design leads to changing more code -- in contrast, with Lisps you just write the code and the data it operates on can change as needed. In addition to these, there's the usual benefits of a functional language -- one with first class lambda functions, etc (eg, garbage collection).
In general, these advantage have been finding their way into other languages. For example, Javascript has everything that I listed so far. But there is one more advantage for Lisps that is still not present in other languages -- macros. This is an important tool to use when your problem calls for a domain specific language. Basically, in Lisp you can extend the language with constructs that are specific to your problem -- even if these constructs lead to a completely different language.
Finally, you need to plan ahead for what happens when the code becomes more than a quick experiment. In this case you want your language to cope with "growing scripts into applications" -- for example, having a module system means that you can get a more "serious"
application. For example, in Racket you can get your solution separated into such modules, where each can be written in its own language -- it even has a statically typed language which makes it possible to start with a dynamically typed development cycle and once the code becomes more stable and/or big enough that maintenance becomes difficult, you can switch some modules into the static language and get the usual benefits from that. Racket is actually unique among Lisps and Schemes in this kind of support, but even with others the situation is still far more advanced than in non-Lisp languages.
In AI (Artificial Intelligence) historically Lisp was seen as the AI assembly language. It was used to build higher-level languages which help to work with the problem domain in a more direct way. Many of these domains need a lot of 'knowledge' for finding usable answers.
A typical example is an expert system for, say, oil exploration. The expert system gets as inputs (geological) observations and gives information about the chances to find oil, what kind of oil, in what depths, etc. To do that it needs 'expert knowledge' how to interpret the data. When you start such a project to develop such an expert system it is typically not clear what kind of inferences are needed, what kind of 'knowledge' experts can provide and how this 'knowledge' can be written down for a computer.
In this case one typically develops new languages on top of Lisp and you are not working with a fixed predefined language.
As an example see this old paper about Dipmeter Advisor, a Lisp-based expert system developed by Schlumberger in the 1980s.
So, Lisp does not solve any problems. But it was originally used to solve problems that are complex to program, by providing new language layers which should make it easier to express the domain 'knowledge', rules, constraints, etc. to find solutions which are not straight forward to compute.
The "big" win with a language that allows for incremental development is that you (typically) has a read-eval-print loop (or "listener" or "console") that you interact with, plus you tend to not need to lose state when you compile and load new code.
The ability to keep state around from test run to test run means that lengthy computations that are untouched by your changes can simply be kept around instead of being re-computed.
This allows you to experiment and iterate faster. Being able to iterate faster means that exploration is less of a hassle. Very useful for exploratory programming, something that is typical with dealing with less well-defined problems.

Language requirements for AI development [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Why is Lisp used for AI?
What makes a language suitable for Artificial Intelligence development?
I've heard that LISP and Prolog are widely used in this field. What features make them suitable for AI?
Overall I would say the main thing I see about languages "preferred" for AI is that they have high order programming along with many tools for abstraction.
It is high order programming (aka functions as first class objects) that tends to be a defining characteristic of most AI languages http://en.wikipedia.org/wiki/Higher-order_programming that I can see. That article is a stub and it leaves out Prolog http://en.wikipedia.org/wiki/Prolog which allows high order "predicates".
But basically high order programming is the idea that you can pass a function around like a variable. Surprisingly a lot of the scripting languages have functions as first class objects as well. LISP/Prolog are a given as AI languages. But some of the others might be surprising. I have seen several AI books for Python. One of them is http://www.nltk.org/book. Also I have seen some for Ruby and Perl. If you study more about LISP you will recognize a lot of its features are similar to modern scripting languages. However LISP came out in 1958...so it really was ahead of its time.
There are AI libraries for Java. And in Java you can sort of hack functions as first class objects using methods on classes, it is harder/less convenient than LISP but possible. In C and C++ you have function pointers, although again they are much more of a bother than LISP.
Once you have functions as first class objects, you can program much more generically than is otherwise possible. Without functions as first class objects, you might have to construct sum(array), product(array) to perform the different operations. But with functions as first class objects you could compute accumulate(array, +) and accumulate(array, *). You could even do accumulate(array, getDataElement, operation). Since AI is so ill defined that type of flexibility is a great help. Now you can build much more generic code that is much easier to extend in ways that were not originally even conceived.
And Lambda (now finding its way all over the place) becomes a way to save typing so that you don't have to define every function. In the previous example, instead of having to make getDataElement(arrayelement) { return arrayelement.GPA } somewhere you can just say accumulate(array, lambda element: return element.GPA, +). So you don't have to pollute your namespace with tons of functions to only be called once or twice.
If you go back in time to 1958, basically your choices were LISP, Fortran, or Assembly. Compared to Fortran LISP was much more flexible (unfortunately also less efficient) and offered much better means of abstraction. In addition to functions as first class objects, it also had dynamic typing, garbage collection, etc. (stuff any scripting language has today). Now there are more choices to use as a language, although LISP benefited from being first and becoming the language that everyone happened to use for AI. Now look at Ruby/Python/Perl/JavaScript/Java/C#/and even the latest proposed standard for C you start to see features from LISP sneaking in (map/reduce, lambdas, garbage collection, etc.). LISP was way ahead of its time in the 1950's.
Even now LISP still maintains a few aces in the hole over most of the competition. The macro systems in LISP are really advanced. In C you can go and extend the language with library calls or simple macros (basically a text substitution). In LISP you can define new language elements (think your own if statement, now think your own custom language for defining GUIs). Overall LISP languages still offer ways of abstraction that the mainstream languages still haven't caught up with. Sure you can define your own custom compiler for C and add all the language constructs you want, but no one does that really. In LISP the programmer can do that easily via Macros. Also LISP is compiled and per the programming language shootout, it is more efficient than Perl, Python, and Ruby in general.
Prolog basically is a logic language made for representing facts and rules. What are expert systems but collections of rules and facts. Since it is very convenient to represent a bunch of rules in Prolog, there is an obvious synergy there with expert systems.
Now I think using LISP/Prolog for every AI problem is not a given. In fact just look at the multitude of Machine Learning/Data Mining libraries available for Java. However when you are prototyping a new system or are experimenting because you don't know what you are doing, it is way easier to do it with a scripting language than a statically typed one. LISP was the earliest languages to have all these features we take for granted. Basically there was no competition at all at first.
Also in general academia seems to like functional languages a lot. So it doesn't hurt that LISP is functional. Although now you have ML, Haskell, OCaml, etc. on that front as well (some of these languages support multiple paradigms...).
The main calling card of both Lisp and Prolog in this particular field is that they support metaprogramming concepts like lambdas. The reason that is important is that it helps when you want to roll your own programming language within a programming language, like you will commonly want to do for writing expert system rules.
To do this well in a lower-level imperative language like C, it is generally best to just create a separate compiler or language library for your new (expert system rule) language, so you can write your rules in the new language and your actions in C. This is the principle behind things like CLIPS.
The two main things you want are the ability to do experimental programming and the ability to do unconventional programming.
When you're doing AI, you by definition don't really know what you're doing. (If you did, it wouldn't be AI, would it?) This means you want a language where you can quickly try things and change them. I haven't found any language I like better than Common Lisp for that, personally.
Similarly, you're doing something not quite conventional. Prolog is already an unconventional language, and Lisp has macros that can transform the language tremendously.
What do you mean by "AI"? The field is so broad as to make this question unanswerable. What applications are you looking at?
LISP was used because it was better than FORTRAN. Prolog was used, too, but no one remembers that. This was when people believed that symbol-based approaches were the way to go, before it was understood how hard the sensing and expression layers are.
But modern "AI" (machine vision, planners, hell, Google's uncanny ability to know what you 'meant') is done in more efficient programming languages that are more sustainable for a large team to develop in. This usually means C++ these days--but it's not like anyone thinks of C++ as a good language for AI.
Hell, you can do a lot of what was called "AI" in the 70s in MATLAB. No one's ever called MATLAB "a good language for AI" before, have they?
Functional programming languages are easier to parallelise due to their stateless nature. There seems to already be a subject about it with some good answers here: Advantages of stateless programming?
As said, its also generally simpler to build programs that generate programs in LISP due to the simplicity of the language, but this is only relevant to certain areas of AI such as evolutionary computation.
Edit:
Ok, I'll try and explain a bit about why parallelism is important to AI using Symbolic AI as an example, as its probably the area of AI that I understand best. Basically its what everyone was using back in the day when LISP was invented, and the Physical Symbol Hypothesis on which it is based is more or less the same way you would go about calculating and modelling stuff in LISP code. This link explains a bit about it:
http://www.cs.st-andrews.ac.uk/~mkw/IC_Group/What_is_Symbolic_AI_full.html
So basically the idea is that you create a model of your environment, then searching through it to find a solution. One of the simplest to algorithms to implement is a breadth first search, which is an exhaustive search of all possible states. While producing an optimal result, it is usually prohibitively time consuming. One way to optimise this is by using a heuristic (A* being an example), another is to divide the work between CPUs.
Due to statelessness, in theory, any node you expand in your search could be ran in a separate thread without the complexity or overhead involved in locking shared data. In general, assuming the hardware can support it, then the more highly you can parallelise a task the faster you will get your result. An example of this could be the folding#home project, which distributes work over many GPUs to find optimal protein folding configurations (that may not have anything to do with LISP, but is relevant to parallelism).
As far as I know from LISP is that is a Functional Programming Language, and with it you are able to make "programs that make programs. I don't know if my answer suits your needs, see above links for more information.
Pattern matching constructs with instantiation (or the ability to easily construct pattern matching code) are a big plus. Pattern matching is not totally necessary to do A.I., but it can sure simplify the code for many A.I. tasks. I'm finding this also makes F# a convenient language for A.I.
Languages per se (without libraries) are suitable/comfortable for specific areas of research/investigation and/or learning/studying ("how to do the simplest things in the hardest way").
Suitability for commercial development is determined by availability of frameworks, libraries, development tools, communities of developers, adoption by companies. For ex., in internet you shall find support for any, even the most exotic issue/areas (including, of course, AI areas), for ex., in C# because it is mainstream.
BTW, what specifically is context of question? AI is so broad term.
Update:
Oooops, I really did not expect to draw attention and discussion to my answer.
Under ("how to do the simplest things in the hardest way"), I mean that studying and learning, as well as academic R&D objectives/techniques/approaches/methodology do not coincide with objectives of (commercial) development.
In student (or even academic) projects one can write tons of code which would probably require one line of code in commercial RAD (using of component/service/feature of framework or library).
Because..! oooh!
Because, there is no sense to entangle/develop any discussion without first agreeing on common definitions of terms... which are subjective and depend on context... and are not so easy to be formulate in general/abstract context.
And this is inter-disciplinary matter of whole areas of different sciences
The question is broad (philosophical) and evasively formulated... without beginning and end... having no definitive answers without of context and definitions...
Are we going to develop here some spec proposal?

About Dijkstra's paper

I am reading Coders at Work.
I came across this paragraph in Donald Knuth's interview.
Seibel: It seems a lot of the people I’ve talked to had direct access to a machine when they were starting out. Yet Dijkstra has a paper I’m sure you’re familiar with, where he basically says we shouldn’t let computer-science students touch a machine for the first few years of their training; they should spend all their time manipulating symbols.
I want link to that paper. Which one paper is that? (He wrote too many :-)
Maybe this one?
Excerpt, from near the end:
Before we part, I would like to invite you to consider the following way of doing justice to computing's radical novelty in an introductory programming course.
On the one hand, we teach what looks like the predicate calculus, but we do it very differently from the philosophers. In order to train the novice programmer in the manipulation of uninterpreted formulae, we teach it more as boolean algebra, familiarizing the student with all algebraic properties of the logical connectives. To further sever the links to intuition, we rename the values {true, false} of the boolean domain as {black, white}.
On the other hand, we teach a simple, clean, imperative programming language, with a skip and a multiple assignment as basic statements, with a block structure for local variables, the semicolon as operator for statement composition, a nice alternative construct, a nice repetition and, if so desired, a procedure call. To this we add a minimum of data types, say booleans, integers, characters and strings. The essential thing is that, for whatever we introduce, the corresponding semantics is defined by the proof rules that go with it.
Right from the beginning, and all through the course, we stress that the programmer's task is not just to write down a program, but that his main task is to give a formal proof that the program he proposes meets the equally formal functional specification. While designing proofs and programs hand in hand, the student gets ample opportunity to perfect his manipulative agility with the predicate calculus. Finally, in order to drive home the message that this introductory programming course is primarily a course in formal mathematics, we see to it that the programming language in question has not been implemented on campus so that students are protected from the temptation to test their programs. And this concludes the sketch of my proposal for an introductory programming course for freshmen.
I found a manuscript of Dijkstra's "Cruelty" lecture.

How was the Google Books' Popular passages feature developed?

I'm curious if anyone understands, knows or can point me to comprehensive literature or source code on how Google created their popular passage blocks feature. However, if you know of any other application that can do the same please post your answer too.
If you do not know what I am writing about here is a link to an example of Popular Passages. When you look at the overview of the book Modelling the legal decision process for information technology applications ... By Georgios N. Yannopoulos you can see something like:
Popular passages
... direction, indeterminate. We have
not settled, because we have not
anticipated, the question which will
be raised by the unenvisaged case when
it occurs; whether some degree of
peace in the park is to be sacrificed
to, or defended against, those
children whose pleasure or interest it
is to use these things. When the
unenvisaged case does arise, we
confront the issues at stake and can
then settle the question by choosing
between the competing interests in the
way which best satisfies us. In
doing...‎ Page 86
Appears in 15 books from 1968-2003
This would be a world fit for
"mechanical" jurisprudence. Plainly
this world is not our world; human
legislators can have no such knowledge
of all the possible combinations of
circumstances which the future may
bring. This inability to anticipate
brings with it a relative
indeterminacy of aim. When we are bold
enough to frame some general rule of
conduct (eg, a rule that no vehicle
may be taken into the park), the
language used in this context fixes
necessary conditions which anything
must satisfy...‎ Page 86
Appears in 8 books from 1968-2000
more
It must be an intensive pattern matching process. I can only think of n-gram models, text corpus, automatic plagisrism detection. But, sometimes n-grams are probabilistic models for predicting the next item in a sequence and text corpus (to my knowledge) are manually created. And, in this particular case, popular passages, there can be a great deal of words.
I am really lost. If I wanted to create such a feature, how or where should I start? Also, include in your response what programming languages are best suited for this stuff: F# or any other functional lang, PERL, Python, Java... (I am becoming a F# fan myself)
PS: can someone include the tag automatic-plagiarism-detection, because i can't
Read this ACM paper by Kolak and Schilit, the Google researchers who developed Popular Passages. There are also a few relevant slides from this MapReduce course taught by Baldridge and Lease at The University of Texas at Austin.
In the small sample I looked over, it looks like all the passages picked were inline or block quotes. Just a guess, but perhaps Google Books looks for quote marks/differences in formatting and a citation, then uses a parsed version of the bibliography to associate the quote with the source. Hooray for style manuals.
This approach is obviously of no help to detect plagiarism, and is of little help if the corpus isn't in a format that preserves text formatting.
If you know which books are citing or referencing other books you don't need to look at all possible books only the books that are citing each other. If is is scientific reference often line and page numbers are included with the quote or can be found in the bibliography at the end of the book, so maybe google parses only this informations?
Google scholar certainly has the information about citing from paper to paper maybe from book to book too.