Using method to create function? The details explanation? - scala

def first[A] :Tuple2[A,_] => A = ( pair :Tuple2[A,_] ) => pair._1
val name = first( ("Anna", 23) )
"If you take a closer look at line 2, what you see here is a method call which returns a newly created function of type Tuple2[String,Any] => String (since the compiler kicks in and infers the needed type for applying to person). Although the whole expression looks like an ordinary method call, it’s in fact a method call (to a factory method without any parameter) and a function call which follows afterwards. " -- this is the explanation of the above code.
I am not able to reason about the first step of the above process (the process creating a function object). Can someone write out a "human compiler" procedure explicitly?
EDIT: I think the fully expanded logic for line 2 should be the following two lines
val firstAsFunc= first[String];
val name = firstAsFunc(("Anna", 23))

I'm not sure to break it down further. Here's what I can think of -- I hope you get it, or that someone else is feeling more clever than I.
scala> val func = first[String] // method call
func: Tuple2[String, _] => String = <function1>
scala> val name = func( ("Anna", 23) )
name: String = Anna
The problem with the above is that func is really a getter -- a method call itself -- so I'm hardly changing anything.
EDIT
I'm not sure what you mean by formal parameter. The method first doesn't have value parameters, just type parameters. Trying to pass a value parameter to it would be a syntactical error.

When you say
(pair: Tuple2[A,_]) => pair._1
the compiler decides that you are actually saying
new Function1[Tuple2[A,_], A] {
def apply(pair: Tuple2[A,_]) = pair._1
}
That is, the first method creates a new object (of type Function1) with a method called apply which then is transparently called when you say first(...). (You would get the same thing if you wrote first.apply(...).)
(Note: Tuple2[A,_] can itself be abbreviated (A,_).)

I'm not 100% sure that I understand which bit of the process you're asking about - are you asking about what a function object is? I'll answer that question on the assumption that it is :-)
A function object is an object that derives from one of the FunctionN (Function0, Function1 etc.) traits and implements an apply method. So your example could be rewritten:
scala> def first[A]: Tuple2[A, _] => A = new Function1[Tuple2[A, _], A] { def apply(pair: Tuple2[A, _]) = pair._1 }
first: [A]=> Tuple2[A, _] => A
scala> val name = first( ("Anna", 23) )
name: java.lang.String = Anna
You can see that a function is actually an instance of FunctionN like so:
scala> def foo(x: Int, y: Double): String = "x = "+ x.toString +", "+ y.toString
foo: (x: Int, y: Double)String
scala> (foo _).isInstanceOf[Function2[_, _, _]]
res1: Boolean = true

If you take a closer look at line 2, what you see here is a method call which returns a newly created function of type Tuple2[String,Any] => String
This explanation is wrong. Line 2 does not "return a newly created function". The function is created on line 1, as explained by Rex Kerr.
Although the whole expression [on line 2] looks like an ordinary method call, it’s in fact a method call (to a factory method without any parameter) and a function call which follows afterwards.
I don't believe this is true; there is no hidden factory method going on, because the Function1 object has already been created on line 1.
One of the questions I was asking what is the formal parameter for method first.
See Wikipedia > Parameter # Computer Science

Related

Difference between function and methods in scala [duplicate]

I read Scala Functions (part of Another tour of Scala). In that post he stated:
Methods and functions are not the same thing
But he didn't explain anything about it. What was he trying to say?
Jim has got this pretty much covered in his blog post, but I'm posting a briefing here for reference.
First, let's see what the Scala Specification tell us. Chapter 3 (types) tell us about Function Types (3.2.9) and Method Types (3.3.1). Chapter 4 (basic declarations) speaks of Value Declaration and Definitions (4.1), Variable Declaration and Definitions (4.2) and Functions Declarations and Definitions (4.6). Chapter 6 (expressions) speaks of Anonymous Functions (6.23) and Method Values (6.7). Curiously, function values is spoken of one time on 3.2.9, and no where else.
A Function Type is (roughly) a type of the form (T1, ..., Tn) => U, which is a shorthand for the trait FunctionN in the standard library. Anonymous Functions and Method Values have function types, and function types can be used as part of value, variable and function declarations and definitions. In fact, it can be part of a method type.
A Method Type is a non-value type. That means there is no value - no object, no instance - with a method type. As mentioned above, a Method Value actually has a Function Type. A method type is a def declaration - everything about a def except its body.
Value Declarations and Definitions and Variable Declarations and Definitions are val and var declarations, including both type and value - which can be, respectively, Function Type and Anonymous Functions or Method Values. Note that, on the JVM, these (method values) are implemented with what Java calls "methods".
A Function Declaration is a def declaration, including type and body. The type part is the Method Type, and the body is an expression or a block. This is also implemented on the JVM with what Java calls "methods".
Finally, an Anonymous Function is an instance of a Function Type (ie, an instance of the trait FunctionN), and a Method Value is the same thing! The distinction is that a Method Value is created from methods, either by postfixing an underscore (m _ is a method value corresponding to the "function declaration" (def) m), or by a process called eta-expansion, which is like an automatic cast from method to function.
That is what the specs say, so let me put this up-front: we do not use that terminology! It leads to too much confusion between so-called "function declaration", which is a part of the program (chapter 4 -- basic declarations) and "anonymous function", which is an expression, and "function type", which is, well a type -- a trait.
The terminology below, and used by experienced Scala programmers, makes one change from the terminology of the specification: instead of saying function declaration, we say method. Or even method declaration. Furthermore, we note that value declarations and variable declarations are also methods for practical purposes.
So, given the above change in terminology, here's a practical explanation of the distinction.
A function is an object that includes one of the FunctionX traits, such as Function0, Function1, Function2, etc. It might be including PartialFunction as well, which actually extends Function1.
Let's see the type signature for one of these traits:
trait Function2[-T1, -T2, +R] extends AnyRef
This trait has one abstract method (it has a few concrete methods as well):
def apply(v1: T1, v2: T2): R
And that tell us all that there is to know about it. A function has an apply method which receives N parameters of types T1, T2, ..., TN, and returns something of type R. It is contra-variant on the parameters it receives, and co-variant on the result.
That variance means that a Function1[Seq[T], String] is a subtype of Function1[List[T], AnyRef]. Being a subtype means it can be used in place of it. One can easily see that if I'm going to call f(List(1, 2, 3)) and expect an AnyRef back, either of the two types above would work.
Now, what is the similarity of a method and a function? Well, if f is a function and m is a method local to the scope, then both can be called like this:
val o1 = f(List(1, 2, 3))
val o2 = m(List(1, 2, 3))
These calls are actually different, because the first one is just a syntactic sugar. Scala expands it to:
val o1 = f.apply(List(1, 2, 3))
Which, of course, is a method call on object f. Functions also have other syntactic sugars to its advantage: function literals (two of them, actually) and (T1, T2) => R type signatures. For example:
val f = (l: List[Int]) => l mkString ""
val g: (AnyVal) => String = {
case i: Int => "Int"
case d: Double => "Double"
case o => "Other"
}
Another similarity between a method and a function is that the former can be easily converted into the latter:
val f = m _
Scala will expand that, assuming m type is (List[Int])AnyRef into (Scala 2.7):
val f = new AnyRef with Function1[List[Int], AnyRef] {
def apply(x$1: List[Int]) = this.m(x$1)
}
On Scala 2.8, it actually uses an AbstractFunction1 class to reduce class sizes.
Notice that one can't convert the other way around -- from a function to a method.
Methods, however, have one big advantage (well, two -- they can be slightly faster): they can receive type parameters. For instance, while f above can necessarily specify the type of List it receives (List[Int] in the example), m can parameterize it:
def m[T](l: List[T]): String = l mkString ""
I think this pretty much covers everything, but I'll be happy to complement this with answers to any questions that may remain.
One big practical difference between a method and a function is what return means. return only ever returns from a method. For example:
scala> val f = () => { return "test" }
<console>:4: error: return outside method definition
val f = () => { return "test" }
^
Returning from a function defined in a method does a non-local return:
scala> def f: String = {
| val g = () => { return "test" }
| g()
| "not this"
| }
f: String
scala> f
res4: String = test
Whereas returning from a local method only returns from that method.
scala> def f2: String = {
| def g(): String = { return "test" }
| g()
| "is this"
| }
f2: String
scala> f2
res5: String = is this
function A function can be invoked with a list of arguments to produce a
result. A function has a parameter list, a body, and a result type.
Functions that are members of a class, trait, or singleton object are
called methods. Functions defined inside other functions are called
local functions. Functions with the result type of Unit are called procedures.
Anonymous functions in source code are called function literals.
At run time, function literals are instantiated into objects called
function values.
Programming in Scala Second Edition.
Martin Odersky - Lex Spoon - Bill Venners
Let Say you have a List
scala> val x =List.range(10,20)
x: List[Int] = List(10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
Define a Method
scala> def m1(i:Int)=i+2
m1: (i: Int)Int
Define a Function
scala> (i:Int)=>i+2
res0: Int => Int = <function1>
scala> x.map((x)=>x+2)
res2: List[Int] = List(12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Method Accepting Argument
scala> m1(2)
res3: Int = 4
Defining Function with val
scala> val p =(i:Int)=>i+2
p: Int => Int = <function1>
Argument to function is Optional
scala> p(2)
res4: Int = 4
scala> p
res5: Int => Int = <function1>
Argument to Method is Mandatory
scala> m1
<console>:9: error: missing arguments for method m1;
follow this method with `_' if you want to treat it as a partially applied function
Check the following Tutorial that explains passing other differences with examples like other example of diff with Method Vs Function, Using function as Variables, creating function that returned function
Functions don't support parameter defaults. Methods do. Converting from a method to a function loses parameter defaults. (Scala 2.8.1)
There is a nice article here from which most of my descriptions are taken.
Just a short comparison of Functions and Methods regarding my understanding. Hope it helps:
Functions:
They are basically an object. More precisely, functions are objects with an apply method; Therefore, they are a little bit slower than methods because of their overhead. It is similar to static methods in the sense that they are independent of an object to be invoked.
A simple example of a function is just like bellow:
val f1 = (x: Int) => x + x
f1(2) // 4
The line above is nothing except assigning one object to another like object1 = object2. Actually the object2 in our example is an anonymous function and the left side gets the type of an object because of that. Therefore, now f1 is an object(Function). The anonymous function is actually an instance of Function1[Int, Int] that means a function with 1 parameter of type Int and return value of type Int.
Calling f1 without the arguments will give us the signature of the anonymous function (Int => Int = )
Methods:
They are not objects but assigned to an instance of a class,i.e., an object. Exactly the same as method in java or member functions in c++ (as Raffi Khatchadourian pointed out in a comment to this question) and etc.
A simple example of a method is just like bellow:
def m1(x: Int) = x + x
m1(2) // 4
The line above is not a simple value assignment but a definition of a method. When you invoke this method with the value 2 like the second line, the x is substituted with 2 and the result will be calculated and you get 4 as an output. Here you will get an error if just simply write m1 because it is method and need the input value. By using _ you can assign a method to a function like bellow:
val f2 = m1 _ // Int => Int = <function1>
Here is a great post by Rob Norris which explains the difference, here is a TL;DR
Methods in Scala are not values, but functions are. You can construct a function that delegates to a method via η-expansion (triggered by the trailing underscore thingy).
with the following definition:
a method is something defined with def and a value is something you can assign to a val
In a nutshell (extract from the blog):
When we define a method we see that we cannot assign it to a val.
scala> def add1(n: Int): Int = n + 1
add1: (n: Int)Int
scala> val f = add1
<console>:8: error: missing arguments for method add1;
follow this method with `_' if you want to treat it as a partially applied function
val f = add1
Note also the type of add1, which doesn’t look normal; you can’t declare a variable of type (n: Int)Int. Methods are not values.
However, by adding the η-expansion postfix operator (η is pronounced “eta”), we can turn the method into a function value. Note the type of f.
scala> val f = add1 _
f: Int => Int = <function1>
scala> f(3)
res0: Int = 4
The effect of _ is to perform the equivalent of the following: we construct a Function1 instance that delegates to our method.
scala> val g = new Function1[Int, Int] { def apply(n: Int): Int = add1(n) }
g: Int => Int = <function1>
scala> g(3)
res18: Int = 4
Practically, a Scala programmer only needs to know the following three rules to use functions and methods properly:
Methods defined by def and function literals defined by => are functions. It is defined in page 143, Chapter 8 in the book of Programming in Scala, 4th edition.
Function values are objects that can be passed around as any values. Function literals and partially applied functions are function values.
You can leave off the underscore of a partially applied function if a function value is required at a point in the code. For example: someNumber.foreach(println)
After four editions of Programming in Scala, it is still an issue for people to differentiate the two important concepts: function and function value because all editions don't give a clear explanation. The language specification is too complicated. I found the above rules are simple and accurate.
In Scala 2.13, unlike functions, methods can take/return
type parameters (polymorphic methods)
implicit parameters
dependent types
However, these restrictions are lifted in dotty (Scala 3) by Polymorphic function types #4672, for example, dotty version 0.23.0-RC1 enables the following syntax
Type parameters
def fmet[T](x: List[T]) = x.map(e => (e, e))
val ffun = [T] => (x: List[T]) => x.map(e => (e, e))
Implicit parameters (context parameters)
def gmet[T](implicit num: Numeric[T]): T = num.zero
val gfun: [T] => Numeric[T] ?=> T = [T] => (using num: Numeric[T]) => num.zero
Dependent types
class A { class B }
def hmet(a: A): a.B = new a.B
val hfun: (a: A) => a.B = hmet
For more examples, see tests/run/polymorphic-functions.scala
The difference is subtle but substantial and it is related to the type system in use (besides the nomenclature coming from Object Oriented or Functional paradigm).
When we talk about a function, we talk about the type Function: it being a type, an instance of it can be passed around as input or output to other functions (at least in the case of Scala).
When we talk about a method (of a class), we are actually talking about the type represented by the class it is part of: that is, the method is just a component of a larger type, and cannot be passed around by itself. It must be passed around with the instance of the type it is part of (i.e. the instance of the class).
A method belongs to an object (usually the class, trait or object in which you define it), whereas a function is by itself a value, and because in Scala every value is an object, therefore, a function is an object.
For example, given a method and a function below:
def timesTwoMethod(x :Int): Int = x * 2
def timesTwoFunction = (x: Int) => x * 2
The second def is an object of type Int => Int (the syntactic sugar for Function1[Int, Int]).
Scala made functions objects so they could be used as first-class entities. This way you can pass functions to other functions as arguments.
However, Scala can also treat methods as functions via a mechanism called Eta Expansion.
For example, the higher-order function map defined on List, receives another function f: A => B as its only parameter. The next two lines are equivalent:
List(1, 2, 3).map(timesTwoMethod)
List(1, 2, 3).map(timesTwoFunction)
When the compiler sees a def given in a place where a function is needed, it automatically converts the method into an equivalent function.
A method operates on an object but a function doesn't.
Scala and C++ has Fuction but in JAVA, you have to imitate them with static methods.

Function and method in Scala [duplicate]

I read Scala Functions (part of Another tour of Scala). In that post he stated:
Methods and functions are not the same thing
But he didn't explain anything about it. What was he trying to say?
Jim has got this pretty much covered in his blog post, but I'm posting a briefing here for reference.
First, let's see what the Scala Specification tell us. Chapter 3 (types) tell us about Function Types (3.2.9) and Method Types (3.3.1). Chapter 4 (basic declarations) speaks of Value Declaration and Definitions (4.1), Variable Declaration and Definitions (4.2) and Functions Declarations and Definitions (4.6). Chapter 6 (expressions) speaks of Anonymous Functions (6.23) and Method Values (6.7). Curiously, function values is spoken of one time on 3.2.9, and no where else.
A Function Type is (roughly) a type of the form (T1, ..., Tn) => U, which is a shorthand for the trait FunctionN in the standard library. Anonymous Functions and Method Values have function types, and function types can be used as part of value, variable and function declarations and definitions. In fact, it can be part of a method type.
A Method Type is a non-value type. That means there is no value - no object, no instance - with a method type. As mentioned above, a Method Value actually has a Function Type. A method type is a def declaration - everything about a def except its body.
Value Declarations and Definitions and Variable Declarations and Definitions are val and var declarations, including both type and value - which can be, respectively, Function Type and Anonymous Functions or Method Values. Note that, on the JVM, these (method values) are implemented with what Java calls "methods".
A Function Declaration is a def declaration, including type and body. The type part is the Method Type, and the body is an expression or a block. This is also implemented on the JVM with what Java calls "methods".
Finally, an Anonymous Function is an instance of a Function Type (ie, an instance of the trait FunctionN), and a Method Value is the same thing! The distinction is that a Method Value is created from methods, either by postfixing an underscore (m _ is a method value corresponding to the "function declaration" (def) m), or by a process called eta-expansion, which is like an automatic cast from method to function.
That is what the specs say, so let me put this up-front: we do not use that terminology! It leads to too much confusion between so-called "function declaration", which is a part of the program (chapter 4 -- basic declarations) and "anonymous function", which is an expression, and "function type", which is, well a type -- a trait.
The terminology below, and used by experienced Scala programmers, makes one change from the terminology of the specification: instead of saying function declaration, we say method. Or even method declaration. Furthermore, we note that value declarations and variable declarations are also methods for practical purposes.
So, given the above change in terminology, here's a practical explanation of the distinction.
A function is an object that includes one of the FunctionX traits, such as Function0, Function1, Function2, etc. It might be including PartialFunction as well, which actually extends Function1.
Let's see the type signature for one of these traits:
trait Function2[-T1, -T2, +R] extends AnyRef
This trait has one abstract method (it has a few concrete methods as well):
def apply(v1: T1, v2: T2): R
And that tell us all that there is to know about it. A function has an apply method which receives N parameters of types T1, T2, ..., TN, and returns something of type R. It is contra-variant on the parameters it receives, and co-variant on the result.
That variance means that a Function1[Seq[T], String] is a subtype of Function1[List[T], AnyRef]. Being a subtype means it can be used in place of it. One can easily see that if I'm going to call f(List(1, 2, 3)) and expect an AnyRef back, either of the two types above would work.
Now, what is the similarity of a method and a function? Well, if f is a function and m is a method local to the scope, then both can be called like this:
val o1 = f(List(1, 2, 3))
val o2 = m(List(1, 2, 3))
These calls are actually different, because the first one is just a syntactic sugar. Scala expands it to:
val o1 = f.apply(List(1, 2, 3))
Which, of course, is a method call on object f. Functions also have other syntactic sugars to its advantage: function literals (two of them, actually) and (T1, T2) => R type signatures. For example:
val f = (l: List[Int]) => l mkString ""
val g: (AnyVal) => String = {
case i: Int => "Int"
case d: Double => "Double"
case o => "Other"
}
Another similarity between a method and a function is that the former can be easily converted into the latter:
val f = m _
Scala will expand that, assuming m type is (List[Int])AnyRef into (Scala 2.7):
val f = new AnyRef with Function1[List[Int], AnyRef] {
def apply(x$1: List[Int]) = this.m(x$1)
}
On Scala 2.8, it actually uses an AbstractFunction1 class to reduce class sizes.
Notice that one can't convert the other way around -- from a function to a method.
Methods, however, have one big advantage (well, two -- they can be slightly faster): they can receive type parameters. For instance, while f above can necessarily specify the type of List it receives (List[Int] in the example), m can parameterize it:
def m[T](l: List[T]): String = l mkString ""
I think this pretty much covers everything, but I'll be happy to complement this with answers to any questions that may remain.
One big practical difference between a method and a function is what return means. return only ever returns from a method. For example:
scala> val f = () => { return "test" }
<console>:4: error: return outside method definition
val f = () => { return "test" }
^
Returning from a function defined in a method does a non-local return:
scala> def f: String = {
| val g = () => { return "test" }
| g()
| "not this"
| }
f: String
scala> f
res4: String = test
Whereas returning from a local method only returns from that method.
scala> def f2: String = {
| def g(): String = { return "test" }
| g()
| "is this"
| }
f2: String
scala> f2
res5: String = is this
function A function can be invoked with a list of arguments to produce a
result. A function has a parameter list, a body, and a result type.
Functions that are members of a class, trait, or singleton object are
called methods. Functions defined inside other functions are called
local functions. Functions with the result type of Unit are called procedures.
Anonymous functions in source code are called function literals.
At run time, function literals are instantiated into objects called
function values.
Programming in Scala Second Edition.
Martin Odersky - Lex Spoon - Bill Venners
Let Say you have a List
scala> val x =List.range(10,20)
x: List[Int] = List(10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
Define a Method
scala> def m1(i:Int)=i+2
m1: (i: Int)Int
Define a Function
scala> (i:Int)=>i+2
res0: Int => Int = <function1>
scala> x.map((x)=>x+2)
res2: List[Int] = List(12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Method Accepting Argument
scala> m1(2)
res3: Int = 4
Defining Function with val
scala> val p =(i:Int)=>i+2
p: Int => Int = <function1>
Argument to function is Optional
scala> p(2)
res4: Int = 4
scala> p
res5: Int => Int = <function1>
Argument to Method is Mandatory
scala> m1
<console>:9: error: missing arguments for method m1;
follow this method with `_' if you want to treat it as a partially applied function
Check the following Tutorial that explains passing other differences with examples like other example of diff with Method Vs Function, Using function as Variables, creating function that returned function
Functions don't support parameter defaults. Methods do. Converting from a method to a function loses parameter defaults. (Scala 2.8.1)
There is a nice article here from which most of my descriptions are taken.
Just a short comparison of Functions and Methods regarding my understanding. Hope it helps:
Functions:
They are basically an object. More precisely, functions are objects with an apply method; Therefore, they are a little bit slower than methods because of their overhead. It is similar to static methods in the sense that they are independent of an object to be invoked.
A simple example of a function is just like bellow:
val f1 = (x: Int) => x + x
f1(2) // 4
The line above is nothing except assigning one object to another like object1 = object2. Actually the object2 in our example is an anonymous function and the left side gets the type of an object because of that. Therefore, now f1 is an object(Function). The anonymous function is actually an instance of Function1[Int, Int] that means a function with 1 parameter of type Int and return value of type Int.
Calling f1 without the arguments will give us the signature of the anonymous function (Int => Int = )
Methods:
They are not objects but assigned to an instance of a class,i.e., an object. Exactly the same as method in java or member functions in c++ (as Raffi Khatchadourian pointed out in a comment to this question) and etc.
A simple example of a method is just like bellow:
def m1(x: Int) = x + x
m1(2) // 4
The line above is not a simple value assignment but a definition of a method. When you invoke this method with the value 2 like the second line, the x is substituted with 2 and the result will be calculated and you get 4 as an output. Here you will get an error if just simply write m1 because it is method and need the input value. By using _ you can assign a method to a function like bellow:
val f2 = m1 _ // Int => Int = <function1>
Here is a great post by Rob Norris which explains the difference, here is a TL;DR
Methods in Scala are not values, but functions are. You can construct a function that delegates to a method via η-expansion (triggered by the trailing underscore thingy).
with the following definition:
a method is something defined with def and a value is something you can assign to a val
In a nutshell (extract from the blog):
When we define a method we see that we cannot assign it to a val.
scala> def add1(n: Int): Int = n + 1
add1: (n: Int)Int
scala> val f = add1
<console>:8: error: missing arguments for method add1;
follow this method with `_' if you want to treat it as a partially applied function
val f = add1
Note also the type of add1, which doesn’t look normal; you can’t declare a variable of type (n: Int)Int. Methods are not values.
However, by adding the η-expansion postfix operator (η is pronounced “eta”), we can turn the method into a function value. Note the type of f.
scala> val f = add1 _
f: Int => Int = <function1>
scala> f(3)
res0: Int = 4
The effect of _ is to perform the equivalent of the following: we construct a Function1 instance that delegates to our method.
scala> val g = new Function1[Int, Int] { def apply(n: Int): Int = add1(n) }
g: Int => Int = <function1>
scala> g(3)
res18: Int = 4
Practically, a Scala programmer only needs to know the following three rules to use functions and methods properly:
Methods defined by def and function literals defined by => are functions. It is defined in page 143, Chapter 8 in the book of Programming in Scala, 4th edition.
Function values are objects that can be passed around as any values. Function literals and partially applied functions are function values.
You can leave off the underscore of a partially applied function if a function value is required at a point in the code. For example: someNumber.foreach(println)
After four editions of Programming in Scala, it is still an issue for people to differentiate the two important concepts: function and function value because all editions don't give a clear explanation. The language specification is too complicated. I found the above rules are simple and accurate.
In Scala 2.13, unlike functions, methods can take/return
type parameters (polymorphic methods)
implicit parameters
dependent types
However, these restrictions are lifted in dotty (Scala 3) by Polymorphic function types #4672, for example, dotty version 0.23.0-RC1 enables the following syntax
Type parameters
def fmet[T](x: List[T]) = x.map(e => (e, e))
val ffun = [T] => (x: List[T]) => x.map(e => (e, e))
Implicit parameters (context parameters)
def gmet[T](implicit num: Numeric[T]): T = num.zero
val gfun: [T] => Numeric[T] ?=> T = [T] => (using num: Numeric[T]) => num.zero
Dependent types
class A { class B }
def hmet(a: A): a.B = new a.B
val hfun: (a: A) => a.B = hmet
For more examples, see tests/run/polymorphic-functions.scala
The difference is subtle but substantial and it is related to the type system in use (besides the nomenclature coming from Object Oriented or Functional paradigm).
When we talk about a function, we talk about the type Function: it being a type, an instance of it can be passed around as input or output to other functions (at least in the case of Scala).
When we talk about a method (of a class), we are actually talking about the type represented by the class it is part of: that is, the method is just a component of a larger type, and cannot be passed around by itself. It must be passed around with the instance of the type it is part of (i.e. the instance of the class).
A method belongs to an object (usually the class, trait or object in which you define it), whereas a function is by itself a value, and because in Scala every value is an object, therefore, a function is an object.
For example, given a method and a function below:
def timesTwoMethod(x :Int): Int = x * 2
def timesTwoFunction = (x: Int) => x * 2
The second def is an object of type Int => Int (the syntactic sugar for Function1[Int, Int]).
Scala made functions objects so they could be used as first-class entities. This way you can pass functions to other functions as arguments.
However, Scala can also treat methods as functions via a mechanism called Eta Expansion.
For example, the higher-order function map defined on List, receives another function f: A => B as its only parameter. The next two lines are equivalent:
List(1, 2, 3).map(timesTwoMethod)
List(1, 2, 3).map(timesTwoFunction)
When the compiler sees a def given in a place where a function is needed, it automatically converts the method into an equivalent function.
A method operates on an object but a function doesn't.
Scala and C++ has Fuction but in JAVA, you have to imitate them with static methods.

Scala Function Definitions and Performance [duplicate]

I read Scala Functions (part of Another tour of Scala). In that post he stated:
Methods and functions are not the same thing
But he didn't explain anything about it. What was he trying to say?
Jim has got this pretty much covered in his blog post, but I'm posting a briefing here for reference.
First, let's see what the Scala Specification tell us. Chapter 3 (types) tell us about Function Types (3.2.9) and Method Types (3.3.1). Chapter 4 (basic declarations) speaks of Value Declaration and Definitions (4.1), Variable Declaration and Definitions (4.2) and Functions Declarations and Definitions (4.6). Chapter 6 (expressions) speaks of Anonymous Functions (6.23) and Method Values (6.7). Curiously, function values is spoken of one time on 3.2.9, and no where else.
A Function Type is (roughly) a type of the form (T1, ..., Tn) => U, which is a shorthand for the trait FunctionN in the standard library. Anonymous Functions and Method Values have function types, and function types can be used as part of value, variable and function declarations and definitions. In fact, it can be part of a method type.
A Method Type is a non-value type. That means there is no value - no object, no instance - with a method type. As mentioned above, a Method Value actually has a Function Type. A method type is a def declaration - everything about a def except its body.
Value Declarations and Definitions and Variable Declarations and Definitions are val and var declarations, including both type and value - which can be, respectively, Function Type and Anonymous Functions or Method Values. Note that, on the JVM, these (method values) are implemented with what Java calls "methods".
A Function Declaration is a def declaration, including type and body. The type part is the Method Type, and the body is an expression or a block. This is also implemented on the JVM with what Java calls "methods".
Finally, an Anonymous Function is an instance of a Function Type (ie, an instance of the trait FunctionN), and a Method Value is the same thing! The distinction is that a Method Value is created from methods, either by postfixing an underscore (m _ is a method value corresponding to the "function declaration" (def) m), or by a process called eta-expansion, which is like an automatic cast from method to function.
That is what the specs say, so let me put this up-front: we do not use that terminology! It leads to too much confusion between so-called "function declaration", which is a part of the program (chapter 4 -- basic declarations) and "anonymous function", which is an expression, and "function type", which is, well a type -- a trait.
The terminology below, and used by experienced Scala programmers, makes one change from the terminology of the specification: instead of saying function declaration, we say method. Or even method declaration. Furthermore, we note that value declarations and variable declarations are also methods for practical purposes.
So, given the above change in terminology, here's a practical explanation of the distinction.
A function is an object that includes one of the FunctionX traits, such as Function0, Function1, Function2, etc. It might be including PartialFunction as well, which actually extends Function1.
Let's see the type signature for one of these traits:
trait Function2[-T1, -T2, +R] extends AnyRef
This trait has one abstract method (it has a few concrete methods as well):
def apply(v1: T1, v2: T2): R
And that tell us all that there is to know about it. A function has an apply method which receives N parameters of types T1, T2, ..., TN, and returns something of type R. It is contra-variant on the parameters it receives, and co-variant on the result.
That variance means that a Function1[Seq[T], String] is a subtype of Function1[List[T], AnyRef]. Being a subtype means it can be used in place of it. One can easily see that if I'm going to call f(List(1, 2, 3)) and expect an AnyRef back, either of the two types above would work.
Now, what is the similarity of a method and a function? Well, if f is a function and m is a method local to the scope, then both can be called like this:
val o1 = f(List(1, 2, 3))
val o2 = m(List(1, 2, 3))
These calls are actually different, because the first one is just a syntactic sugar. Scala expands it to:
val o1 = f.apply(List(1, 2, 3))
Which, of course, is a method call on object f. Functions also have other syntactic sugars to its advantage: function literals (two of them, actually) and (T1, T2) => R type signatures. For example:
val f = (l: List[Int]) => l mkString ""
val g: (AnyVal) => String = {
case i: Int => "Int"
case d: Double => "Double"
case o => "Other"
}
Another similarity between a method and a function is that the former can be easily converted into the latter:
val f = m _
Scala will expand that, assuming m type is (List[Int])AnyRef into (Scala 2.7):
val f = new AnyRef with Function1[List[Int], AnyRef] {
def apply(x$1: List[Int]) = this.m(x$1)
}
On Scala 2.8, it actually uses an AbstractFunction1 class to reduce class sizes.
Notice that one can't convert the other way around -- from a function to a method.
Methods, however, have one big advantage (well, two -- they can be slightly faster): they can receive type parameters. For instance, while f above can necessarily specify the type of List it receives (List[Int] in the example), m can parameterize it:
def m[T](l: List[T]): String = l mkString ""
I think this pretty much covers everything, but I'll be happy to complement this with answers to any questions that may remain.
One big practical difference between a method and a function is what return means. return only ever returns from a method. For example:
scala> val f = () => { return "test" }
<console>:4: error: return outside method definition
val f = () => { return "test" }
^
Returning from a function defined in a method does a non-local return:
scala> def f: String = {
| val g = () => { return "test" }
| g()
| "not this"
| }
f: String
scala> f
res4: String = test
Whereas returning from a local method only returns from that method.
scala> def f2: String = {
| def g(): String = { return "test" }
| g()
| "is this"
| }
f2: String
scala> f2
res5: String = is this
function A function can be invoked with a list of arguments to produce a
result. A function has a parameter list, a body, and a result type.
Functions that are members of a class, trait, or singleton object are
called methods. Functions defined inside other functions are called
local functions. Functions with the result type of Unit are called procedures.
Anonymous functions in source code are called function literals.
At run time, function literals are instantiated into objects called
function values.
Programming in Scala Second Edition.
Martin Odersky - Lex Spoon - Bill Venners
Let Say you have a List
scala> val x =List.range(10,20)
x: List[Int] = List(10, 11, 12, 13, 14, 15, 16, 17, 18, 19)
Define a Method
scala> def m1(i:Int)=i+2
m1: (i: Int)Int
Define a Function
scala> (i:Int)=>i+2
res0: Int => Int = <function1>
scala> x.map((x)=>x+2)
res2: List[Int] = List(12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
Method Accepting Argument
scala> m1(2)
res3: Int = 4
Defining Function with val
scala> val p =(i:Int)=>i+2
p: Int => Int = <function1>
Argument to function is Optional
scala> p(2)
res4: Int = 4
scala> p
res5: Int => Int = <function1>
Argument to Method is Mandatory
scala> m1
<console>:9: error: missing arguments for method m1;
follow this method with `_' if you want to treat it as a partially applied function
Check the following Tutorial that explains passing other differences with examples like other example of diff with Method Vs Function, Using function as Variables, creating function that returned function
Functions don't support parameter defaults. Methods do. Converting from a method to a function loses parameter defaults. (Scala 2.8.1)
There is a nice article here from which most of my descriptions are taken.
Just a short comparison of Functions and Methods regarding my understanding. Hope it helps:
Functions:
They are basically an object. More precisely, functions are objects with an apply method; Therefore, they are a little bit slower than methods because of their overhead. It is similar to static methods in the sense that they are independent of an object to be invoked.
A simple example of a function is just like bellow:
val f1 = (x: Int) => x + x
f1(2) // 4
The line above is nothing except assigning one object to another like object1 = object2. Actually the object2 in our example is an anonymous function and the left side gets the type of an object because of that. Therefore, now f1 is an object(Function). The anonymous function is actually an instance of Function1[Int, Int] that means a function with 1 parameter of type Int and return value of type Int.
Calling f1 without the arguments will give us the signature of the anonymous function (Int => Int = )
Methods:
They are not objects but assigned to an instance of a class,i.e., an object. Exactly the same as method in java or member functions in c++ (as Raffi Khatchadourian pointed out in a comment to this question) and etc.
A simple example of a method is just like bellow:
def m1(x: Int) = x + x
m1(2) // 4
The line above is not a simple value assignment but a definition of a method. When you invoke this method with the value 2 like the second line, the x is substituted with 2 and the result will be calculated and you get 4 as an output. Here you will get an error if just simply write m1 because it is method and need the input value. By using _ you can assign a method to a function like bellow:
val f2 = m1 _ // Int => Int = <function1>
Here is a great post by Rob Norris which explains the difference, here is a TL;DR
Methods in Scala are not values, but functions are. You can construct a function that delegates to a method via η-expansion (triggered by the trailing underscore thingy).
with the following definition:
a method is something defined with def and a value is something you can assign to a val
In a nutshell (extract from the blog):
When we define a method we see that we cannot assign it to a val.
scala> def add1(n: Int): Int = n + 1
add1: (n: Int)Int
scala> val f = add1
<console>:8: error: missing arguments for method add1;
follow this method with `_' if you want to treat it as a partially applied function
val f = add1
Note also the type of add1, which doesn’t look normal; you can’t declare a variable of type (n: Int)Int. Methods are not values.
However, by adding the η-expansion postfix operator (η is pronounced “eta”), we can turn the method into a function value. Note the type of f.
scala> val f = add1 _
f: Int => Int = <function1>
scala> f(3)
res0: Int = 4
The effect of _ is to perform the equivalent of the following: we construct a Function1 instance that delegates to our method.
scala> val g = new Function1[Int, Int] { def apply(n: Int): Int = add1(n) }
g: Int => Int = <function1>
scala> g(3)
res18: Int = 4
Practically, a Scala programmer only needs to know the following three rules to use functions and methods properly:
Methods defined by def and function literals defined by => are functions. It is defined in page 143, Chapter 8 in the book of Programming in Scala, 4th edition.
Function values are objects that can be passed around as any values. Function literals and partially applied functions are function values.
You can leave off the underscore of a partially applied function if a function value is required at a point in the code. For example: someNumber.foreach(println)
After four editions of Programming in Scala, it is still an issue for people to differentiate the two important concepts: function and function value because all editions don't give a clear explanation. The language specification is too complicated. I found the above rules are simple and accurate.
In Scala 2.13, unlike functions, methods can take/return
type parameters (polymorphic methods)
implicit parameters
dependent types
However, these restrictions are lifted in dotty (Scala 3) by Polymorphic function types #4672, for example, dotty version 0.23.0-RC1 enables the following syntax
Type parameters
def fmet[T](x: List[T]) = x.map(e => (e, e))
val ffun = [T] => (x: List[T]) => x.map(e => (e, e))
Implicit parameters (context parameters)
def gmet[T](implicit num: Numeric[T]): T = num.zero
val gfun: [T] => Numeric[T] ?=> T = [T] => (using num: Numeric[T]) => num.zero
Dependent types
class A { class B }
def hmet(a: A): a.B = new a.B
val hfun: (a: A) => a.B = hmet
For more examples, see tests/run/polymorphic-functions.scala
The difference is subtle but substantial and it is related to the type system in use (besides the nomenclature coming from Object Oriented or Functional paradigm).
When we talk about a function, we talk about the type Function: it being a type, an instance of it can be passed around as input or output to other functions (at least in the case of Scala).
When we talk about a method (of a class), we are actually talking about the type represented by the class it is part of: that is, the method is just a component of a larger type, and cannot be passed around by itself. It must be passed around with the instance of the type it is part of (i.e. the instance of the class).
A method belongs to an object (usually the class, trait or object in which you define it), whereas a function is by itself a value, and because in Scala every value is an object, therefore, a function is an object.
For example, given a method and a function below:
def timesTwoMethod(x :Int): Int = x * 2
def timesTwoFunction = (x: Int) => x * 2
The second def is an object of type Int => Int (the syntactic sugar for Function1[Int, Int]).
Scala made functions objects so they could be used as first-class entities. This way you can pass functions to other functions as arguments.
However, Scala can also treat methods as functions via a mechanism called Eta Expansion.
For example, the higher-order function map defined on List, receives another function f: A => B as its only parameter. The next two lines are equivalent:
List(1, 2, 3).map(timesTwoMethod)
List(1, 2, 3).map(timesTwoFunction)
When the compiler sees a def given in a place where a function is needed, it automatically converts the method into an equivalent function.
A method operates on an object but a function doesn't.
Scala and C++ has Fuction but in JAVA, you have to imitate them with static methods.

Strange implicit def with function parameter behaviour in Scala

I've written a simple code in Scala with implicit conversion of Function1 to some case class.
object MyApp extends App{
case class FunctionContainer(val function:AnyRef)
implicit def cast(function1: Int => String):FunctionContainer = new FunctionContainer(function1)
def someFunction(i:Int):String = "someString"
def abc(f : FunctionContainer):String = "abc"
println(abc(someFunction))
}
But it doesn't work. Compiler doesn't want to pass someFunction as an argument to abc. I can guess its reasons but don't know exactly why it doesn't work.
When you use a method name as you have, the compiler has to pick how to convert the method type to a value. If the expected type is a function, then it eta-expands; otherwise it supplies empty parens to invoke the method. That is described here in the spec.
But it wasn't always that way. Ten years ago, you would have got your function value just by using the method name.
The new online spec omits the "Change Log" appendix, so for the record, here is the moment when someone got frustrated with parens and introduced the current rules. (See Scala Reference 2.9, page 181.)
This has not eliminated all irksome anomalies.
Conversions
The rules for implicit conversions of methods to functions (§6.26) have been tightened. Previously, a parameterized method used as a value was always implicitly converted to a function. This could lead to unexpected results when method arguments were forgotten. Consider for instance the statement below:
show(x.toString)
where show is defined as follows:
def show(x: String) = Console.println(x)
Most likely, the programmer forgot to supply an empty argument list () to toString. The previous Scala version would treat this code as a partially applied method, and expand it to:
show(() => x.toString())
As a result, the address of a closure would be printed instead of the value of s. Scala version 2.0 will apply a conversion from partially applied method to function value only if the expected type of the expression is indeed a function type. For instance, the conversion would not be applied in the code above because the expected type of show’s parameter is String, not a function type. The new convention disallows some previously legal code. Example:
def sum(f: int => double)(a: int, b: int): double =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)
val sumInts = sum(x => x) // error: missing arguments
The partial application of sum in the last line of the code above will not be converted to a function type. Instead, the compiler will produce an error message which states that arguments for method sum are missing. The problem can be fixed by providing an expected type for the partial application, for instance by annotating the definition of sumInts with its type:
val sumInts: (int, int) => double = sum(x => x) // OK
On the other hand, Scala version 2.0 now automatically applies methods with empty parameter lists to () argument lists when necessary. For instance, the show expression above will now be expanded to
show(x.toString())
Your someFunction appears as a method here.
You could try either
object MyApp extends App{
case class FunctionContainer(val function:AnyRef)
implicit def cast(function1: Int => String):FunctionContainer = new FunctionContainer(function1)
val someFunction = (i:Int) => "someString"
def abc(f : FunctionContainer):String = "abc"
println(abc(someFunction))
}
or
object MyApp extends App{
case class FunctionContainer(val function:AnyRef)
implicit def cast(function1: Int => String):FunctionContainer = new FunctionContainer(function1)
def someFunction(i:Int): String = "someString"
def abc(f : FunctionContainer):String = "abc"
println(abc(someFunction(_: Int)))
}
By the way: implicitly casting such common functions to something else can quickly lead to problems. Are you absolutely sure that you need this? Wouldn't it be easier to overload abc?
You should use eta-expansion
println(abc(someFunction _))

First parameter as default in Scala

Is there another way of making this work?
def b(first:String="hello",second:String) = println("first:"+first+" second:"+second)
b(second="geo")
If I call the method with just:
b("geo")
I get:
<console>:7: error: not enough arguments for method b: (first: String,second: String)Unit.
Unspecified value parameter second.
b("geo")
Here is one of the possible ways: you can use several argument lists and currying:
scala> def b(first:String="hello")(second:String) = println("first:"+first+" second:"+second)
b: (first: String)(second: String)Unit
scala> b()("Scala")
first:hello second:Scala
scala> val c = b() _
c: (String) => Unit = <function1>
scala> c("Scala")
first:hello second:Scala
See scala language specifications 6.6.1 (http://www.scala-lang.org/docu/files/ScalaReference.pdf):
"The named arguments form a suffix of the argument list e1, ..., em, i.e. no positional argument follows a named one."
Providing a single string parameter (without naming it) is too ambiguous for the compiler. Probably you meant the value for the non-default parameter, but... maybe not. So the compiler wants you to be more specific.
Generally you put all your default parameters at the end of the method signature (if you did in this case, b("geo") would work) so that they can be left out less ambiguously.