I'm a bit embarassed to admit this, but I seem to be pretty stumped by what should be a simple programming problem. I'm building a decision tree implementation, and have been using recursion to take a list of labeled samples, recursively split the list in half, and turn it into a tree.
Unfortunately, with deep trees I run into stack overflow errors (ha!), so my first thought was to use continuations to turn it into tail recursion. Unfortunately Scala doesn't support that kind of TCO, so the only solution is to use a trampoline. A trampoline seems kinda inefficient and I was hoping there would be some simple stack-based imperative solution to this problem, but I'm having a lot of trouble finding it.
The recursive version looks sort of like (simplified):
private def trainTree(samples: Seq[Sample], usedFeatures: Set[Int]): DTree = {
if (shouldStop(samples)) {
DTLeaf(makeProportions(samples))
} else {
val featureIdx = getSplittingFeature(samples, usedFeatures)
val (statsWithFeature, statsWithoutFeature) = samples.partition(hasFeature(featureIdx, _))
DTBranch(
trainTree(statsWithFeature, usedFeatures + featureIdx),
trainTree(statsWithoutFeature, usedFeatures + featureIdx),
featureIdx)
}
}
So basically I'm recursively subdividing the list into two according to some feature of the data, and passing through a list of used features so I don't repeat - that's all handled in the "getSplittingFeature" function so we can ignore it. The code is really simple! Still, I'm having trouble figuring out a stack-based solution that doesn't just use closures and effectively become a trampoline. I know we'll at least have to keep around little "frames" of arguments in the stack but I would like to avoid closure calls.
I get that I should be writing out explicitly what the callstack and program counter handle for me implicitly in the recursive solution, but I'm having trouble doing that without continuations. At this point it's hardly even about efficiency, I'm just curious. So please, no need to remind me that premature optimization is the root of all evil and the trampoline-based solution will probably work just fine. I know it probably will - this is basically a puzzle for it's own sake.
Can anyone tell me what the canonical while-loop-and-stack-based solution to this sort of thing is?
UPDATE: Based on Thipor Kong's excellent solution, I've coded up a while-loops/stacks/hashtable based implementation of the algorithm that should be a direct translation of the recursive version. This is exactly what I was looking for:
FINAL UPDATE: I've used sequential integer indices, as well as putting everything back into arrays instead of maps for performance, added maxDepth support, and finally have a solution with the same performance as the recursive version (not sure about memory usage but I would guess less):
private def trainTreeNoMaxDepth(startingSamples: Seq[Sample], startingMaxDepth: Int): DTree = {
// Use arraybuffer as dense mutable int-indexed map - no IndexOutOfBoundsException, just expand to fit
type DenseIntMap[T] = ArrayBuffer[T]
def updateIntMap[#specialized T](ab: DenseIntMap[T], idx: Int, item: T, dfault: T = null.asInstanceOf[T]) = {
if (ab.length <= idx) {ab.insertAll(ab.length, Iterable.fill(idx - ab.length + 1)(dfault)) }
ab.update(idx, item)
}
var currentChildId = 0 // get childIdx or create one if it's not there already
def child(childMap: DenseIntMap[Int], heapIdx: Int) =
if (childMap.length > heapIdx && childMap(heapIdx) != -1) childMap(heapIdx)
else {currentChildId += 1; updateIntMap(childMap, heapIdx, currentChildId, -1); currentChildId }
// go down
val leftChildren, rightChildren = new DenseIntMap[Int]() // heapIdx -> childHeapIdx
val todo = Stack((startingSamples, Set.empty[Int], startingMaxDepth, 0)) // samples, usedFeatures, maxDepth, heapIdx
val branches = new Stack[(Int, Int)]() // heapIdx, featureIdx
val nodes = new DenseIntMap[DTree]() // heapIdx -> node
while (!todo.isEmpty) {
val (samples, usedFeatures, maxDepth, heapIdx) = todo.pop()
if (shouldStop(samples) || maxDepth == 0) {
updateIntMap(nodes, heapIdx, DTLeaf(makeProportions(samples)))
} else {
val featureIdx = getSplittingFeature(samples, usedFeatures)
val (statsWithFeature, statsWithoutFeature) = samples.partition(hasFeature(featureIdx, _))
todo.push((statsWithFeature, usedFeatures + featureIdx, maxDepth - 1, child(leftChildren, heapIdx)))
todo.push((statsWithoutFeature, usedFeatures + featureIdx, maxDepth - 1, child(rightChildren, heapIdx)))
branches.push((heapIdx, featureIdx))
}
}
// go up
while (!branches.isEmpty) {
val (heapIdx, featureIdx) = branches.pop()
updateIntMap(nodes, heapIdx, DTBranch(nodes(child(leftChildren, heapIdx)), nodes(child(rightChildren, heapIdx)), featureIdx))
}
nodes(0)
}
Just store the binary tree in an array, as described on Wikipedia: For node i, the left child goes into 2*i+1 and the right child in to 2*i+2. When doing "down", you keep a collection of todos, that still have to be splitted to reach a leaf. Once you've got only leafs, to go upward (from right to left in the array) to build the decision nodes:
Update: A cleaned up version, that also supports the features stored int the branches (type parameter B) and that is more functional/fully pure and that supports sparse trees with a map as suggested by ron.
Update2-3: Make economical use of name space for node ids and abstract over type of ids to allow of large trees. Take node ids from Stream.
sealed trait DTree[A, B]
case class DTLeaf[A, B](a: A, b: B) extends DTree[A, B]
case class DTBranch[A, B](left: DTree[A, B], right: DTree[A, B], b: B) extends DTree[A, B]
def mktree[A, B, Id](a: A, b: B, split: (A, B) => Option[(A, A, B)], ids: Stream[Id]) = {
#tailrec
def goDown(todo: Seq[(A, B, Id)], branches: Seq[(Id, B, Id, Id)], leafs: Map[Id, DTree[A, B]], ids: Stream[Id]): (Seq[(Id, B, Id, Id)], Map[Id, DTree[A, B]]) =
todo match {
case Nil => (branches, leafs)
case (a, b, id) :: rest =>
split(a, b) match {
case None =>
goDown(rest, branches, leafs + (id -> DTLeaf(a, b)), ids)
case Some((left, right, b2)) =>
val leftId #:: rightId #:: idRest = ids
goDown((right, b2, rightId) +: (left, b2, leftId) +: rest, (id, b2, leftId, rightId) +: branches, leafs, idRest)
}
}
#tailrec
def goUp[A, B](branches: Seq[(Id, B, Id, Id)], nodes: Map[Id, DTree[A, B]]): Map[Id, DTree[A, B]] =
branches match {
case Nil => nodes
case (id, b, leftId, rightId) :: rest =>
goUp(rest, nodes + (id -> DTBranch(nodes(leftId), nodes(rightId), b)))
}
val rootId #:: restIds = ids
val (branches, leafs) = goDown(Seq((a, b, rootId)), Seq(), Map(), restIds)
goUp(branches, leafs)(rootId)
}
// try it out
def split(xs: Seq[Int], b: Int) =
if (xs.size > 1) {
val (left, right) = xs.splitAt(xs.size / 2)
Some((left, right, b + 1))
} else {
None
}
val tree = mktree(0 to 1000, 0, split _, Stream.from(0))
println(tree)
Related
I'm looking for a nice implementation of topological sorting in scala.
The solution should be stable:
If input is already sorted, the output should be unchanged
The algorithm should be deterministic (hashCode has no effect)
I suspect there are libraries that can do this, but I wouldn't like to add nontrivial dependencies due to this.
Example problem:
case class Node(name: String)(val referenced: Node*)
val a = Node("a")()
val b = Node("b")(a)
val c = Node("c")(a)
val d = Node("d")(b, c)
val e = Node("e")(d)
val f = Node("f")()
assertEquals("Previous order is kept",
Vector(f, a, b, c, d, e),
topoSort(Vector(f, a, b, c, d, e)))
assertEquals(Vector(a, b, c, d, f, e),
topoSort(Vector(d, c, b, f, a, e)))
Here the order is defined such that if the nodes were say declarations in a programming language referencing other declarations, the result order would
be such that no declaration is used before it has been declared.
Here is my own solution. Additionnally it returns possible loops detected in the input.
The format of the nodes is not fixed because the caller provides a visitor that
will take a node and a callback and call the callback for each referenced node.
If the loop reporting is not necessary, it should be easy to remove.
import scala.collection.mutable
// Based on https://en.wikipedia.org/wiki/Topological_sorting?oldformat=true#Depth-first_search
object TopologicalSort {
case class Result[T](result: IndexedSeq[T], loops: IndexedSeq[IndexedSeq[T]])
type Visit[T] = (T) => Unit
// A visitor is a function that takes a node and a callback.
// The visitor calls the callback for each node referenced by the given node.
type Visitor[T] = (T, Visit[T]) => Unit
def topoSort[T <: AnyRef](input: Iterable[T], visitor: Visitor[T]): Result[T] = {
// Buffer, because it is operated in a stack like fashion
val temporarilyMarked = mutable.Buffer[T]()
val permanentlyMarked = mutable.HashSet[T]()
val loopsBuilder = IndexedSeq.newBuilder[IndexedSeq[T]]
val resultBuilder = IndexedSeq.newBuilder[T]
def visit(node: T): Unit = {
if (temporarilyMarked.contains(node)) {
val loopStartIndex = temporarilyMarked.indexOf(node)
val loop = temporarilyMarked.slice(loopStartIndex, temporarilyMarked.size)
.toIndexedSeq
loopsBuilder += loop
} else if (!permanentlyMarked.contains(node)) {
temporarilyMarked += node
visitor(node, visit)
permanentlyMarked += node
temporarilyMarked.remove(temporarilyMarked.size - 1, 1)
resultBuilder += node
}
}
for (i <- input) {
if (!permanentlyMarked.contains(i)) {
visit(i)
}
}
Result(resultBuilder.result(), loopsBuilder.result())
}
}
In the example of the question this would be applied like this:
import TopologicalSort._
def visitor(node: BaseNode, callback: (Node) => Unit): Unit = {
node.referenced.foreach(callback)
}
assertEquals("Previous order is kept",
Vector(f, a, b, c, d, e),
topoSort(Vector(f, a, b, c, d, e), visitor).result)
assertEquals(Vector(a, b, c, d, f, e),
topoSort(Vector(d, c, b, f, a, e), visitor).result)
Some thoughts on complexity:
The worst case complexity of this solution is actually above O(n + m) because the temporarilyMarked array is scanned for each node.
The asymptotic complexity would be improved if the temporarilyMarked would be replaced with for example a HashSet.
A true O(n + m) would be achieved if the marks were be stored directly inside the nodes, but storing them outside makes writing a generic solution easier.
I haven't run any performance tests, but I suspect scanning the temporarilyMarked array is not a problem even in large graphs as long as they are not very deep.
Example code and test on Github
I have very similar code is also published here. That version has a test suite which can be useful for experimenting and exploring the implementation.
Why would you detect loops
Detecting loops can be useful for example in serialization situations where most of the data can be handled as a DAG, but loops can be handled with some kind of special arrangement.
The test suite in the Github code linked to in above section contains various cases with multiple loops.
Here's a purely functional implementation that returns the topological ordering ONLY if the graph is acyclic.
case class Node(label: Int)
case class Graph(adj: Map[Node, Set[Node]]) {
case class DfsState(discovered: Set[Node] = Set(), activeNodes: Set[Node] = Set(), tsOrder: List[Node] = List(),
isCylic: Boolean = false)
def dfs: (List[Node], Boolean) = {
def dfsVisit(currState: DfsState, src: Node): DfsState = {
val newState = currState.copy(discovered = currState.discovered + src, activeNodes = currState.activeNodes + src,
isCylic = currState.isCylic || adj(src).exists(currState.activeNodes))
val finalState = adj(src).filterNot(newState.discovered).foldLeft(newState)(dfsVisit(_, _))
finalState.copy(tsOrder = src :: finalState.tsOrder, activeNodes = finalState.activeNodes - src)
}
val stateAfterSearch = adj.keys.foldLeft(DfsState()) {(state, n) => if (state.discovered(n)) state else dfsVisit(state, n)}
(stateAfterSearch.tsOrder, stateAfterSearch.isCylic)
}
def topologicalSort: Option[List[Node]] = dfs match {
case (topologicalOrder, false) => Some(topologicalOrder)
case _ => None
}
}
I've seen many questions about Scala collections and could not decide.
This question was the most useful until now.
I think the core of the question is twofold:
1) Which are the best collections for this use case?
2) Which are the recommended ways to use them?
Details:
I am implementing an algorithm that iterates over all elements in a collection
searching for the one that matches a certain criterion.
After the search, the next step is to search again with a new criterion, but without the chosen element among the possibilities.
The idea is to create a sequence with all original elements ordered by the criterion (which changes at every new selection).
The original sequence doesn't really need to be ordered, but there can be duplicates (the algorithm will only pick one at a time).
Example with a small sequence of Ints (just to simplify):
object Foo extends App {
def f(already_selected: Seq[Int])(element: Int): Double =
// something more complex happens here,
// specially something take takes 'already_selected' into account
math.sqrt(element)
//call to the algorithm
val (result, ti) = Tempo.time(recur(Seq.fill(9900)(Random.nextInt), Seq()))
println("ti = " + ti)
//algorithm
def recur(collection: Seq[Int], already_selected: Seq[Int]): (Seq[Int], Seq[Int]) =
if (collection.isEmpty) (Seq(), already_selected)
else {
val selected = collection maxBy f(already_selected)
val rest = collection diff Seq(selected) //this part doesn't seem to be efficient
recur(rest, selected +: already_selected)
}
}
object Tempo {
def time[T](f: => T): (T, Double) = {
val s = System.currentTimeMillis
(f, (System.currentTimeMillis - s) / 1000d)
}
}
Try #inline and as icn suggested How can I idiomatically "remove" a single element from a list in Scala and close the gap?:
object Foo extends App {
#inline
def f(already_selected: Seq[Int])(element: Int): Double =
// something more complex happens here,
// specially something take takes 'already_selected' into account
math.sqrt(element)
//call to the algorithm
val (result, ti) = Tempo.time(recur(Seq.fill(9900)(Random.nextInt()).zipWithIndex, Seq()))
println("ti = " + ti)
//algorithm
#tailrec
def recur(collection: Seq[(Int, Int)], already_selected: Seq[Int]): Seq[Int] =
if (collection.isEmpty) already_selected
else {
val (selected, i) = collection.maxBy(x => f(already_selected)(x._2))
val rest = collection.patch(i, Nil, 1) //this part doesn't seem to be efficient
recur(rest, selected +: already_selected)
}
}
object Tempo {
def time[T](f: => T): (T, Double) = {
val s = System.currentTimeMillis
(f, (System.currentTimeMillis - s) / 1000d)
}
}
I have some expensive computation in a loop, and I need to find max value produced by the calculations, though if, say, it will equal to LIMIT I'd like to stop the calculation and return my accumulator.
It may easily be done by recursion:
val list: List[Int] = ???
val UpperBound = ???
def findMax(ls: List[Int], max: Int): Int = ls match {
case h :: rest =>
val v = expensiveComputation(h)
if (v == UpperBound) v
else findMax(rest, math.max(max, v))
case _ => max
}
findMax(list, 0)
My question: whether this behaviour template has a name and reflected in scala collection library?
Update: Do something up to N times or until condition is met in Scala - There is an interesting idea (using laziness and find or exists at the end) but it is not directly applicable to my particular case or requires mutable var to track accumulator.
I think your recursive function is quite nice, so honestly I wouldn't change that, but here's a way to use the collections library:
list.foldLeft(0) {
case (max, next) =>
if(max == UpperBound)
max
else
math.max(expensiveComputation(next), max)
}
It will iterate over the whole list, but after it has hit the upper bound it won't perform the expensive computation.
Update
Based on your comment I tried adapting foldLeft a bit, based on LinearSeqOptimized's foldLeft implementation.
def foldLeftWithExit[A, B](list: Seq[A])(z: B)(exit: B => Boolean)(f: (B, A) => B): B = {
var acc = z
var remaining = list
while (!remaining.isEmpty && !exit(acc)) {
acc = f(acc, list.head)
remaining = remaining.tail
}
acc
}
Calling it:
foldLeftWithExit(list)(0)(UpperBound==){
case (max, next) => math.max(expensiveComputation(next), max)
}
You could potentially use implicits to omit the first parameter of list.
Hope this helps.
One way is this
list.distinct.size != list.size
Is there any better way? It would have been nice to have a containsDuplicates method
Assuming "better" means "faster", see the alternative approaches benchmarked in this question, which seems to show some quicker methods (although note that distinct uses a HashSet and is already O(n)). YMMV of course, depending on specific test case, scala version etc. Probably any significant improvement over the "distinct.size" approach would come from an early-out as soon as a duplicate is found, but how much of a speed-up is actually obtained would depend strongly on how common duplicates actually are in your use-case.
If you mean "better" in that you want to write list.containsDuplicates instead of containsDuplicates(list), use an implicit:
implicit def enhanceWithContainsDuplicates[T](s:List[T]) = new {
def containsDuplicates = (s.distinct.size != s.size)
}
assert(List(1,2,2,3).containsDuplicates)
assert(!List("a","b","c").containsDuplicates)
You can also write:
list.toSet.size != list.size
But the result will be the same because distinct is already implemented with a Set. In both case the time complexity should be O(n): you must traverse the list and Set insertion is O(1).
I think this would stop as soon as a duplicate was found and is probably more efficient than doing distinct.size - since I assume distinct keeps a set as well:
#annotation.tailrec
def containsDups[A](list: List[A], seen: Set[A] = Set[A]()): Boolean =
list match {
case x :: xs => if (seen.contains(x)) true else containsDups(xs, seen + x)
case _ => false
}
containsDups(List(1,1,2,3))
// Boolean = true
containsDups(List(1,2,3))
// Boolean = false
I realize you asked for easy and I don't now that this version is, but finding a duplicate is also finding if there is an element that has been seen before:
def containsDups[A](list: List[A]): Boolean = {
list.iterator.scanLeft(Set[A]())((set, a) => set + a) // incremental sets
.zip(list.iterator)
.exists{ case (set, a) => set contains a }
}
#annotation.tailrec
def containsDuplicates [T] (s: Seq[T]) : Boolean =
if (s.size < 2) false else
s.tail.contains (s.head) || containsDuplicates (s.tail)
I didn't measure this, and think it is similar to huynhjl's solution, but a bit more simple to understand.
It returns early, if a duplicate is found, so I looked into the source of Seq.contains, whether this returns early - it does.
In SeqLike, 'contains (e)' is defined as 'exists (_ == e)', and exists is defined in TraversableLike:
def exists (p: A => Boolean): Boolean = {
var result = false
breakable {
for (x <- this)
if (p (x)) { result = true; break }
}
result
}
I'm curious how to speed things up with parallel collections on multi cores, but I guess it is a general problem with early-returning, while another thread will keep running, because it doesn't know, that the solution is already found.
Summary:
I've written a very efficient function which returns both List.distinct and a List consisting of each element which appeared more than once and the index at which the element duplicate appeared.
Note: This answer is a straight copy of the answer on a related question.
Details:
If you need a bit more information about the duplicates themselves, like I did, I have written a more general function which iterates across a List (as ordering was significant) exactly once and returns a Tuple2 consisting of the original List deduped (all duplicates after the first are removed; i.e. the same as invoking distinct) and a second List showing each duplicate and an Int index at which it occurred within the original List.
Here's the function:
def filterDupes[A](items: List[A]): (List[A], List[(A, Int)]) = {
def recursive(remaining: List[A], index: Int, accumulator: (List[A], List[(A, Int)])): (List[A], List[(A, Int)]) =
if (remaining.isEmpty)
accumulator
else
recursive(
remaining.tail
, index + 1
, if (accumulator._1.contains(remaining.head))
(accumulator._1, (remaining.head, index) :: accumulator._2)
else
(remaining.head :: accumulator._1, accumulator._2)
)
val (distinct, dupes) = recursive(items, 0, (Nil, Nil))
(distinct.reverse, dupes.reverse)
}
An below is an example which might make it a bit more intuitive. Given this List of String values:
val withDupes =
List("a.b", "a.c", "b.a", "b.b", "a.c", "c.a", "a.c", "d.b", "a.b")
...and then performing the following:
val (deduped, dupeAndIndexs) =
filterDupes(withDupes)
...the results are:
deduped: List[String] = List(a.b, a.c, b.a, b.b, c.a, d.b)
dupeAndIndexs: List[(String, Int)] = List((a.c,4), (a.c,6), (a.b,8))
And if you just want the duplicates, you simply map across dupeAndIndexes and invoke distinct:
val dupesOnly =
dupeAndIndexs.map(_._1).distinct
...or all in a single call:
val dupesOnly =
filterDupes(withDupes)._2.map(_._1).distinct
...or if a Set is preferred, skip distinct and invoke toSet...
val dupesOnly2 =
dupeAndIndexs.map(_._1).toSet
...or all in a single call:
val dupesOnly2 =
filterDupes(withDupes)._2.map(_._1).toSet
This is a straight copy of the filterDupes function out of my open source Scala library, ScalaOlio. It's located at org.scalaolio.collection.immutable.List_._.
If you're trying to check for duplicates in a test then ScalaTest can be helpful.
import org.scalatest.Inspectors._
import org.scalatest.Matchers._
forEvery(list.distinct) { item =>
withClue(s"value $item, the number of occurences") {
list.count(_ == item) shouldBe 1
}
}
// example:
scala> val list = List(1,2,3,4,3,2)
list: List[Int] = List(1, 2, 3, 4, 3, 2)
scala> forEvery(list) { item => withClue(s"value $item, the number of occurences") { list.count(_ == item) shouldBe 1 } }
org.scalatest.exceptions.TestFailedException: forEvery failed, because:
at index 1, value 2, the number of occurences 2 was not equal to 1 (<console>:19),
at index 2, value 3, the number of occurences 2 was not equal to 1 (<console>:19)
in List(1, 2, 3, 4)
Given a key k in a SortedMap, how can I efficiently find the largest key m that is less than or equal to k, and also the smallest key n that is greater than or equal to k. Thank you.
Looking at the source code for 2.9.0, the following code seems about to be the best you can do
def getLessOrEqual[A,B](sm: SortedMap[A,B], bound: A): B = {
val key = sm.to(x).lastKey
sm(key)
}
I don't know exactly how the splitting of the RedBlack tree works, but I guess it's something like a O(log n) traversal of the tree/construction of new elements and then a balancing, presumable also O(log n). Then you need to go down the new tree again to get the last key. Unfortunately you can't retrieve the value in the same go. So you have to go down again to fetch the value.
In addition the lastKey might throw an exception and there is no similar method that returns an Option.
I'm waiting for corrections.
Edit and personal comment
The SortedMap area of the std lib seems to be a bit neglected. I'm also missing a mutable SortedMap. And looking through the sources, I noticed that there are some important methods missing (like the one the OP asks for or the ones pointed out in my answer) and also some have bad implementation, like 'last' which is defined by TraversableLike and goes through the complete tree from first to last to obtain the last element.
Edit 2
Now the question is reformulated my answer is not valid anymore (well it wasn't before anyway). I think you have to do the thing I'm describing twice for lessOrEqual and greaterOrEqual. Well you can take a shortcut if you find the equal element.
Scala's SortedSet trait has no method that will give you the closest element to some other element.
It is presently implemented with TreeSet, which is based on RedBlack. The RedBlack tree is not visible through methods on TreeSet, but the protected method tree is protected. Unfortunately, it is basically useless. You'd have to override methods returning TreeSet to return your subclass, but most of them are based on newSet, which is private.
So, in the end, you'd have to duplicate most of TreeSet. On the other hand, it isn't all that much code.
Once you have access to RedBlack, you'd have to implement something similar to RedBlack.Tree's lookup, so you'd have O(logn) performance. That's actually the same complexity of range, though it would certainly do less work.
Alternatively, you'd make a zipper for the tree, so that you could actually navigate through the set in constant time. It would be a lot more work, of course.
Using Scala 2.11.7, the following will give what you want:
scala> val set = SortedSet('a', 'f', 'j', 'z')
set: scala.collection.SortedSet[Char] = TreeSet(a, f, j, z)
scala> val beforeH = set.to('h').last
beforeH: Char = f
scala> val afterH = set.from('h').head
afterH: Char = j
Generally you should use lastOption and headOption as the specified elements may not exist. If you are looking to squeeze a little more efficiency out, you can try replacing from(...).head with keysIteratorFrom(...).head
Sadly, the Scala library only allows to make this type of query efficiently:
and also the smallest key n that is greater than or equal to k.
val n = TreeMap(...).keysIteratorFrom(k).next
You can hack this by keeping two structures, one with normal keys, and one with negated keys. Then you can use the other structure to make the second type of query.
val n = - TreeMap(...).keysIteratorFrom(-k).next
Looks like I should file a ticket to add 'fromIterator' and 'toIterator' methods to 'Sorted' trait.
Well, one option is certainly using java.util.TreeMap.
It has lowerKey and higherKey methods, which do excatly what you want.
I had a similar problem: I wanted to find the closest element to a given key in a SortedMap. I remember the answer to this question being, "You have to hack TreeSet," so when I had to implement it for a project, I found a way to wrap TreeSet without getting into its internals.
I didn't see jazmit's answer, which more closely answers the original poster's question with minimum fuss (two method calls). However, those method calls do more work than needed for this application (multiple tree traversals), and my solution provides lots of hooks where other users can modify it to their own needs.
Here it is:
import scala.collection.immutable.TreeSet
import scala.collection.SortedMap
// generalize the idea of an Ordering to metric sets
trait MetricOrdering[T] extends Ordering[T] {
def distance(x: T, y: T): Double
def compare(x: T, y: T) = {
val d = distance(x, y)
if (d > 0.0) 1
else if (d < 0.0) -1
else 0
}
}
class MetricSortedMap[A, B]
(elems: (A, B)*)
(implicit val ordering: MetricOrdering[A])
extends SortedMap[A, B] {
// while TreeSet searches for an element, keep track of the best it finds
// with *thread-safe* mutable state, of course
private val best = new java.lang.ThreadLocal[(Double, A, B)]
best.set((-1.0, null.asInstanceOf[A], null.asInstanceOf[B]))
private val ord = new MetricOrdering[(A, B)] {
def distance(x: (A, B), y: (A, B)) = {
val diff = ordering.distance(x._1, y._1)
val absdiff = Math.abs(diff)
// the "to" position is a key-null pair; the object of interest
// is the other one
if (absdiff < best.get._1)
(x, y) match {
// in practice, TreeSet always picks this first case, but that's
// insider knowledge
case ((to, null), (pos, obj)) =>
best.set((absdiff, pos, obj))
case ((pos, obj), (to, null)) =>
best.set((absdiff, pos, obj))
case _ =>
}
diff
}
}
// use a TreeSet as a backing (not TreeMap because we need to get
// the whole pair back when we query it)
private val treeSet = TreeSet[(A, B)](elems: _*)(ord)
// find the closest key and return:
// (distance to key, the key, its associated value)
def closest(to: A): (Double, A, B) = {
treeSet.headOption match {
case Some((pos, obj)) =>
best.set((ordering.distance(to, pos), pos, obj))
case None =>
throw new java.util.NoSuchElementException(
"SortedMap has no elements, and hence no closest element")
}
treeSet((to, null.asInstanceOf[B])) // called for side effects
best.get
}
// satisfy the contract (or throw UnsupportedOperationException)
def +[B1 >: B](kv: (A, B1)): SortedMap[A, B1] =
new MetricSortedMap[A, B](
elems :+ (kv._1, kv._2.asInstanceOf[B]): _*)
def -(key: A): SortedMap[A, B] =
new MetricSortedMap[A, B](elems.filter(_._1 != key): _*)
def get(key: A): Option[B] = treeSet.find(_._1 == key).map(_._2)
def iterator: Iterator[(A, B)] = treeSet.iterator
def rangeImpl(from: Option[A], until: Option[A]): SortedMap[A, B] =
new MetricSortedMap[A, B](treeSet.rangeImpl(
from.map((_, null.asInstanceOf[B])),
until.map((_, null.asInstanceOf[B]))).toSeq: _*)
}
// test it with A = Double
implicit val doubleOrdering =
new MetricOrdering[Double] {
def distance(x: Double, y: Double) = x - y
}
// and B = String
val stuff = new MetricSortedMap[Double, String](
3.3 -> "three",
1.1 -> "one",
5.5 -> "five",
4.4 -> "four",
2.2 -> "two")
println(stuff.iterator.toList)
println(stuff.closest(1.5))
println(stuff.closest(1000))
println(stuff.closest(-1000))
println(stuff.closest(3.3))
println(stuff.closest(3.4))
println(stuff.closest(3.2))
I've been doing:
val m = SortedMap(myMap.toSeq:_*)
val offsetMap = (m.toSeq zip m.keys.toSeq.drop(1)).map {
case ( (k,v),newKey) => (newKey,v)
}.toMap
When I want the results of my map off-set by one key. I'm also looking for a better way, preferably without storing an extra map.