Core Data Efficiency - iphone

Is it overkill to store 4 types of attributes into a 32-bit int within Core Data?
Or should I simply create a separate attribute for each of them? (will use logic operators to set/get).
I plan to add a new entity to an existing object which will contain anywhere from 200-400 items with about 14 attributes (including an 'index' attribute for ordering purposes). Only one set will be operated on or viewed at any time.
I will need to maintain undo support (referencing How do I improve performance of Core Data object insert on iPhone?)
I may be able to ween this down to about 8 attributes if I store several attributes into a single field. Barring the searchability issue, will I be saving appreciable space?
Also, is it unreasonable to store a set of 400 objects in a growing list of items which will grow at a rate of about 1-3 per week?
I hear some people storing thousands of items in core data so perhaps I am being paranoid. I suppose in the long-run I will need to provide an export archive option, perhaps to iCloud.

So you're saying you have 400 objects with 14 attributes, which you could either store as separate integers, or combine into fewer 32-bit (4-byte) values?
400 x 14 x 4 bytes = 22,400 bytes
That's not very much space at all. If you cut that in half, you're saving 11K, which will probably be dwarfed by the size of the extra code you'll be generating to encode and decode these values.
But don't take my word for it: write a small test program that stuffs values into Core Data, then run it under the profiler to see what happens.
You can also read up on SQLite and how it stores values, since that's what Core Data is using under the hood.
My gut says you're being paranoid and your bit twiddling code won't help much. Worse, it will be a great way to introduce really subtle bugs when you forget that you are shifting with sign extension. (And I love writing bit-twiddling code!)

Related

How would you minimize or compress Core Data sqlite file size?

I have a 215MB csv file which I have parsed and stored in core data wrapped in my own custom objects. The problem is my core data sqlite file is around 260MB. The csv file contains about 4.5million lines of data on my city's transit system (bus stop, times, routes etc).
I have tried modifying attributes so that arrays of strings representing stop times are stored instead as NSData files but for some reason the file size still remains at around 260MB.
I can't ship an app this size. I doubt anyone would want to download a 260MB app even if it means they have the whole city's transit schedule on it.
Are there any ways to compress or minimize the storage space used (even if it means not using core data, I am willing to hear suggestions)?
EDIT: I just want to provide an update right now because I have been staring at the file size in disbelief. With some clever manipulation involving strings, indexing and database normalization in general, I have managed to reduce the size down to 6.5MB or 2.6MB when compressed. About 105,000 objects stored in Core Data containing the full details of the city's transit system. I'm almost in tears right now D':
Unless your original CSV is encoded in a really foolish manner, it seems unlikely that the size is not going to get below 100M, no matter how much you compress it. That's still really large for an app. The solution is to move your data to a web service. You may want to download and cache significant parts, but if you're talking about millions of records, then fetching from a server seems best. Besides, I have to believe that from time to time the transit system changes, and it would be frustrating to have to upgrade a many-10s-of-MB app every time there was a single stop adjustment.
I've said that, but actually there are some things you may consider:
Move booleans into a bit fields. You can put 64 booleans into an NSUInteger. (And don't use a full 64-bit integer if you just need 8 bits. Store the smallest thing you can.)
Compress how you store times. There are only 1440 minutes in a day. You can store that in 2 bytes. Transit times are generally not to the second; they don't need a CGFloat.
Days of the week and dates can similarly be compressed.
Obviously you should normalize any strings. Look at the CSV for duplicated string values on many lines.
I generally would recommend raw sqlite rather than core data for this kind of problem. Core Data is more about object persistence than raw data storage. The fact that you're seeing a 20% bloat over CSV (which is not itself highly efficient) is not a good direction for this problem.
If you want to get even tighter, and don't need very good searching capabilities, you can create packed data blobs. I used to do this on phone switches where memory was extremely tight. You create a bit field struct and allocate 5 bits for one variable, and 7 bits for another, etc. With that, and some time shuffling things so they line up correctly on word boundaries, you can get pretty tight.
Since you care most about your initial download size, and may be willing to expand your data later for faster access, you can consider very domain-specific compression. For example, in the above discussion, I mentioned how to get down to 2 bytes for a time. You could probably get down to 1 bytes in many cases by storing times as delta minutes since the last time (since most of your times are going to be always increasing by fairly small steps if they're bus and train schedules). Abandoning the database, you could create a very tightly encoded data file that you could extract into a database on first launch.
You also can use domain-specific knowledge to encode your strings into smaller tokens. If I were encoding the NY subway system, I would notice that some strings show up a lot, like "Avenue", "Road", "Street", "East", etc. I'd probably encode those as unprintable ASCII like ^A, ^R, ^S, ^E, etc. I'd probably encode "138 Street" as two bytes (0x8A13). This of course is based on my knowledge that รจ (0x8a) never shows up in the NY subway stops. It's not a general solution (in Paris it might be a problem), but it can be used to highly compress data that you have special knowledge of. In a city like Washington DC, I believe their highest numbered street is 38th St, and then there's a 4-value direction. So you can encode that in two bytes, first a "numbered street" token, and then a bit field with 2 bits for the quadrant and 6 bits for the street number. This kind of thinking can potentially significantly shrink your data size.
You might be able to perform some database normalization.
Look for anything that might be redundant or the same values being stored in multiple rows. You will probably need to restructure your database so these duplicate values (if any) are stored in separate tables and then referenced from their original row by means of id's.
How big is the sqlite file compressed? If it's satisfactorily small, the simplest thing would be to ship it compressed, then uncompress it to NSCachesDirectory.

Efficient disk access of large number of small .mat files containing objects

I'm trying to determine the best way to store large numbers of small .mat files, around 9000 objects with sizes ranging from 2k to 100k, for a total of around half a gig.
The typical use case is that I only need to pull a small number (say 10) of the files from disk at a time.
What I've tried:
Method 1: If I save each file individually, I get performance problems (very slow save times and system sluggishness for some time after) as Windows 7 has difficulty handling so may files in a folder (And I think my SSD is having a rough time of it, too). However, the end result is fine, I can load what I need very quickly. This is using '-v6' save.
Method 2: If I save all of the files in one .mat file and then load just the variables I need, access is very slow (loading takes around three quarters of the time it takes to load the whole file, with small variation depending on the ordering of the save). This is using '-v6' save, too.
I know I could split the files up into many folders but it seems like such a nasty hack (and won't fix the SSD's dislike of writing many small files), is there a better way?
Edit:
The objects are consist mainly of a numeric matrix of double data and an accompanying vector of uint32 identifiers, plus a bunch of small identifying properties (char and numeric).
Five ideas to consider:
Try storing in an HDF5 object - take a look at http://www.mathworks.com/help/techdoc/ref/hdf5.html - you may find that this solves all of your problems. It will also be compatible with many other systems (e.g. Python, Java, R).
A variation on your method #2 is to store them in one or more files, but to turn off compression.
Different datatypes: It may also be the case that you have some objects that compress or decompress inexplicably poorly. I have had such issues with either cell arrays or struct arrays. I eventually found a way around it, but it's been awhile & I can't remember how to reproduce this particular problem. The solution was to use a different data structure.
#SB proposed a database. If all else fails, try that. I don't like building external dependencies and additional interfaces, but it should work (the primary problem is that if the DB starts to groan or corrupts your data, then you're back at square 1). For this purpose consider SQLite, which doesn't require a separate server/client framework. There is an interface available on Matlab Central: http://www.mathworks.com/matlabcentral/linkexchange/links/1549-matlab-sqlite
(New) Considering that the objects are less than 1GB, it may be easier to just copy the entire set to a RAM disk and then access through that. Just remember to copy from the RAM disk if anything is saved (or wrap save to save objects in two places).
Update: The OP has mentioned custom objects. There are two methods to consider for serializing these:
Two serialization program from Matlab Central: http://www.mathworks.com/matlabcentral/fileexchange/29457 - which was inspired by: http://www.mathworks.com/matlabcentral/fileexchange/12063-serialize
Google's Protocol Buffers. Take a look here: http://code.google.com/p/protobuf-matlab/
Try storing them as blobs in a database.
I would also try the multiple folders method as well - it might perform better than you think. It might also help with organization of the files if that's something you need.
The solution I have come up with is to save object arrays of around 100 of the objects each. These files tend to be 5-6 meg so loading is not prohibitive and access is just a matter of loading the right array(s) and then subsetting them to the desired entry(ies). This compromise avoids writing too many small files, still allows for fast access of single objects and avoids any extra database or serialization overhead.

What's the best way to store static data in an iOS app?

I have in my app a considerable amount of data that it needs to access, but will never be changed by the app. Currently I'm using this data in other applications in JSON files and SQL databases, but neither seems very straightforward to use in iOS.
I don't want to use CoreData, which provides tons of unnecessary functionality and complexity.
Would it be a good idea store the data in PropertyList file and build an accessor class? Are there any simple ways to incorporate SQLite without going the CoreData route?
You can only use plist if the amount of data is relatively small. Plist are entirely loaded into memory so you can only really use them if you can sustain all the objects created by the plist in memory at once for as long as you need them.
Core Data has a learning curve but in use it is usually less complex than SQL. In most cases the "simpler" SQL leads to more coding because you end up having to duplicate much of the functionality of Core Data to shoehorn the procedural SQL into the object-oriented API. You have to manually manage the memory use of all the data by tracking retention. You've write a lot of SQL code every time you want data. I've updated several apps from SQL to Core Data and in all cases the Core Data implementation was smaller and cleaner than the SQL.
Neither is the memory or processor "overhead" any larger. Core Data is highly optimized. In most cases, off the shelf Core Data is more efficient than hand tuned SQL. One minor sub optimization in SQL usually destroys any theoretical advantage it might have.
Of course, if you're already highly skilled at managing SQL in C then you personally might get the app to market more quickly by using SQL. However, if you're wondering what you should plan to use in general on on Apple Platforms, Core Data is almost always the answer and you should take the time to learn it.
You can just use SQLite directly without the overhead of Core Data using the SQLite C API.
Here is a tutorial I found on your use-case - simply loading some data from an SQLite database. Hope this helps.
Depending on the type of your data, the size and how often it changes, you may desire to just keep things simple and use a property list. Otherwise, using SQLite (documented in Jergason's answer) would be where I'd go. Though let me say that if you have a relatively small (less than a couple hundred) set of basic types (arrays, dictionaries, numbers, strings) that don't change frequently, then a property list will be a better choice in my opinion.
As an example to that, in one of my games, I create the levels from a single property list per difficulty. Since there are only a handful of levels per difficulty (99) and a small set of parameters for each (number of elements in play, their initial positions, mass, etc) then it makes sense, and I avoid having to deal with SQLite directly or worse yet, setting up and maintaining CoreData.
What do you mean by "best"? What kind of data?
If it's a bunch of objects, then JSON or (binary) plist aren't terrible formats, since you'll want the whole thing loaded in memory to walk the object graph. Compare space efficiency and loading performance to pick which one to use.
If it's a bunch of binary blobs, then store the blobs in a big file, memory-map the file (NSDataReadingMapped a.k.a. NSMappedRead), and use indexes into the blobs. iOS frameworks use a mixture of these (e.g. there are a lot of .pngs, but also "other.artwork" which just contains raw image data).
You can also use NSKeyedArchiver and friends if your classes implement the NSCoding protocol, but there's some object graph management overhead and the plist format it produces isn't exactly nice to work with.

Objective C iPhone performance issue

Ok guys I am developing an iPhone app I have a Model class which follows a Singleton design pattern.
Now I have an NSArray in it which is initialized to around some 1000 NSStrings in the init method.
Now I need to use this data in some view controller. so I import Model.h, I create an array of NSString objects in view controller & set the data to it. But now the problem is that now I have 2000 NSStrings currently allocated, which I believe is not a good thing on iPhone due to memory considerations.
releasing model object wont help because I've overrided release method to release nothing according to the pattern & I cannot change the design now because now a lot of code works on the assumption of model being a singleton.
& in future maybe the initial NSStrings may grow to 2000 or even more & then I'll have 4000 NSStrings allocated at one time ....
I am a little confused on how to go about it any suggestions
A few thousand strings take barely any memory at all. 4000 strings would take a couple of hundred kB, depending on length. (Rule of thumb here is string length + 20).
Edit: Probably more like string length + 30 or 40, actually; I'm not certain how much overhead NSArray adds.
Reedit: Given the information from the below question; you could probably get away with loading a few hundred strings at the most; just around the area you are browsing; basically turning your SQLite access into a sparse array that caches a few strings around the search area. Not, of course, that I believe it to be necessary; if the strings are location names they probably have an average byte size of 20-30 bytes; giving a (very) rough estimate of 300k of memory to keep them all in memory permanently, greatly reducing access time and giving a better user experience. The iPhone doesn't have a lot of RAM; but you can afford, at the very least a fair few megabytes; 300k isn't going to break your back.
It's difficult to offer specific suggestions without knowing more about your implementation--where do your strings come from? In general, the best performance optimization for this sort of situation is lazy loading. Here are some examples of ways to have a reduced memory footprint with different technologies if you have a table view:
Core Data: Not usually a problem, since objects are faulted and fetched automatically.
SQLite: Again, not usually a problem--you query the database every time you need a particular value (such as when a table view cell needs to display a string).
Internet: Start a request (usually via a thread) when the table view cell is visible.
XML: Trickier, but use SAX (event)-based parsing to find values instead of DOM parsing (which loads the entire document to memory).
That being said, if you made design decisions that are difficult to reverse, it may not be possible to significantly reduce your memory footprint without major refactoring.
EDIT: As per other answers, it's probably not worrying about, but if you were to optimize for memory, you would not load all the SQLite values at application launch, but instead fetch each value from SQLite in cellForRowAtIndexPath. These sorts of problems are made much easier using Core Data--I would highly recommend using Core Data instead of straight SQLite (although it sounds as if you might be too far into development to switch at this point).
If your Model object really is a singleton, then all you need to do is get your strings from the model object in the view controller and use them. I don't see why you would get duplicates.
With NSString, as long as the strings are immutable, the copy method should just retain the object to copy and return the same object to you. Also, if your strings are constant strings i.e. defined like so:
NSString* foo = #"bar";
they are actually part of the executable and will take up no extra RAM at run time.

What's the fastest way to save data and read it next time in a IPhone App?

In my dictionary IPhone app I need to save an array of strings which actually contains about 125.000 distinct words; this transforms in aprox. 3.2Mb of data.
The first time I run the app I get this data from an SQLite db. As it takes ages for this query to run, I need to save the data somehow, to read it faster each time the app launches.
Until now I've tried serializing the array and write it to a file, and afterword I've tested if writing directly to NSUserDefaults to see if there's any speed gain but there's none. In both ways it takes about 7 seconds on the device to load the data. It seems that not reading from the file (or NSUserDefaults) actually takes all that time, but the deserialization does:
objectsForCharacters = [[NSKeyedUnarchiver unarchiveObjectWithData:data] retain];
Do you have any ideeas about how I could write this data structure somehow that I could read/put in memory it faster?
The UITableView is not really designed to handle 10s of thousands of records. If would take a long time for a user to find what they want.
It would be better to load a portion of the table, perhaps a few hundred rows, as the user enters data so that it appears they have all the records available to them (Perhaps providing a label which shows the number of records that they have got left in there filtered view.)
The SQLite db should be perfect for this job. Add an index to the words table and then select a limited number of rows from it to show the user some progress. Adding an index makes a big difference to the performance of the even this simple table.
For example, I created two tables in a sqlite db and populated them with around 80,000 words
#Create and populate the indexed table
create table words(word);
.import dictionary.txt words
create unique index on words_index on word DESC;
#Create and populate the unindexed table
create table unindexed_words(word);
.import dictionary.txt unindexed_words
Then I ran the following query and got the CPU Time taken for each query
.timer ON
select * from words where word like 'sn%' limit 5000;
...
>CPU Time: user 0.031250 sys 0.015625;
select * from unindex_words where word like 'sn%' limit 5000;
...
>CPU Time: user 0.062500 sys 0.0312
The results vary but the indexed version was consistently faster that the unindexed one.
With fast access to parts of the dictionary through an indexed table, you can bind the UITableView to the database using NSFecthedResultsController. This class takes care of fecthing records as required, caches results to improve performance and allows predicates to be easily specified.
An example of how to use the NSFetchedResultsController is included in the iPhone Developers Cookbook. See main.m
Just keep the strings in a file on the disk, and do the binary search directly in the file.
So: you say the file is 3.2mb. Suppose the format of the file is like this:
key DELIMITER value PAIRDELIMITER
where key is a string, and value is the value you want to associate. The DELIMITER and PAIRDELIMITER must be chosen as such that they don't occur in the value and key.
Furthermore, the file must be sorted on the key
With this file you can just do the binary search in the file itself.
Suppose one types a letter, you go to the half of the file, and search(forwards or backwards) to the first PAIRDELIMITER. Then check the key and see if you have to search upwards or downwards. And repeat untill you find the key you need,
I'm betting this will be fast enough.
Store your dictionary in Core Data and use NSFetchedResultsController to manage the display of these dictionary entries in your table view. Loading all 125,000 words into memory at once is a terrible idea, both performance- and memory-wise. Using the -setFetchBatchSize: method on your fetch request for loading the words for your table, you can limit NSFetchedResultsController to only handling the small subset of words that are visible at any given moment, plus a little buffer. As the user scrolls up and down the list of words, new batches of words are fetched in transparently.
A case like yours is exactly why this class (and Core Data) was added to iPhone OS 3.0.
Do you need to store/load all data at once?
Maybe you can just load the chunk of strings you need to display and load all other strings in the background.
Perhaps you can load data into memory in one thread and search from it in another? You may not get search results instantly, but having some searches feel snappier may be better than none at all, by waiting until all data are loaded.
Are some words searched more frequently or repeatedly than others? Perhaps you can cache frequently searched terms in a separate database or other store. Load it in a separate thread as a searchable store, while you are loading the main store.
As for a data structure solution, you might look into a suffix trie to search for substrings in linear time. This will probably increase your storage requirements, though, which may affect your ability to implement this with an iPhone's limited memory and disk storage capabilities.
I really don't think you're on the right path trying to load everything at once.
You've already determined that your bottleneck is the deserialization.
Regardless what the UI does, the user only sees a handful (literally) of search results at a time.
SQLlite already has a robust indexing mechanism, there is likely no need to re-invent that wheel with your own indexing, etc.
IMHO, you need to rethink how you are using UITableView. It only needs a few screenfuls of data at a time, and you should reuse cell objects as they scroll out of view rather than creating a ton of them to begin with.
So, use SQLlite's indexing and grab "TOP x" rows, where x is the right balance between giving the user some immediately-available rows to scroll through without spending too much time loading them. Set the table's scroll bar scaling using a separate SELECT COUNT(*) query, which only needs to be updated when the user types something different.
You can always go back and cache aggressively after you deserialize enough to get something up on-screen. A slight lag after the first flick or typing a letter is more acceptable than a 7-second delay just starting the app.
I have currently a somewhat similar coding problem with a large amount of searchable strings.
My solution is to store the prepared data in one large memory array, containing both the texttual data and offsets as links. Meaning I do not allocate objects for each item. This makes the data use less memory and also allows me to load & save it to a file without further processing.
Not sure if this is an option for you, since this is quite an obvious solution once you've realized that the object tree is causing the slowdown.
I use a large NSData memory block, then search through it. Well, there's more to it, it took me about two days to get it well optimized.
In your case I suspect you have a dictionary with a lot of words that have similar beginnings. You could prepare them on another computer in a format the both compacts the data and also facilitates fast lookup. As a first step, the words should be sorted. With that, you can already perform a binary search on them for a fast lookup. If you store it all in one large memory area, you can do the search quite fast, compared to how sqlite would search, I think.
Another way would be to see the words as a kind of tree: You have many thousands that begin with the same letter. So you divide your data accordingly: You have a sql table for each beginning letter of your set of words. that way, if you look up a word, you'd select one of the now-smaller tables depening on the first letter. This makes the amount that has to be searched already much smaller. and you can do this for the 2nd and 3rd letter as well, and you already could have quite a fast access.
Did this give you some ideas?
Well actually I figured it out myself in the end, but of course I thank you all for your quick and pertinent answers. To be concise I will just say that, the fact that Objective-C, just like any other object-based programming language, due to introspection and other objective requirements is significantly slower than procedural programming languages.
The solution was in fact to load all my data in a continuous chunk of memory using malloc (a char **) and search on-demand in it and transform to objects. This concluded in a .5 sec loading time (from file to memory) and resonable (should be read "fast") operations during execution. Thank you all again and if you have any questions I'm here for you. Thanks