how to write alike display (printf) to file in scheme? - lisp

Using TinyScheme.
I'm writing my code to file (solved it in 50% here: How to write to a file in tinyscheme?) with:
(with-output-to-file "biophilia.c"
(lambda ()
(write code)
))
; and segmentation fault comes here
but it writes my code with "" qotes and \n\r as is so it doesn't translate it to newline.
I need to write code like it looks with (display code)
in example in racket docs there is printf but seems like TinyScheme implementation got no printf, maybe I need to discover (add code of it) printf?

You could try:
(call-with-output-file "biophilia.c"
(lambda (port)
(write-string code port)))
Provided "code" is a string. It will remove any escapes, and write it as plain text.

Found solution, the only fix is ex-hanged put-char to write-char
(define assert
(lambda (aa msg)
(if (null? aa)
#t
(if (not (car aa))
(error msg)
(assert (cdr aa) msg)))))
(display "define fprintf\n\r")
(define (fprintf port f . args)
(let ((len (string-length f)))
(let loop ((i 0) (args args))
(cond ((= i len) (assert (null? args)))
((and (char=? (string-ref f i) #\~)
(< (+ i 1) len))
(dispatch-format (string-ref f (+ i 1)) port (car args))
(loop (+ i 2) (cdr args)))
(else
(write-char (string-ref f i) port)
(loop (+ i 1) args))))))
(display "define printf\n\r")
(define (printf f . args)
(let ((port (current-output-port)))
(apply fprintf port f args)
(flush-output-port port)))
(display "writing to output file biophilia.c\n\r")
(with-output-to-file "biophilia.c"
(lambda ()
(printf code)
))
code doesn't segfault anymore
but in the end of file: Error: ( : 25) not enough arguments

Related

How to define function in LISP that recursively return back quoted list

I have problem with macros in my lisp interpreter writtein in JavaScript. the problem is in this code:
(define log (. console "log"))
(define (alist->object alist)
"(alist->object alist)
Function convert alist pairs to JavaScript object."
(if (pair? alist)
((. alist "toObject"))))
(define (klist->alist klist)
"(klist->alist klist)
Function convert klist in form (:foo 10 :bar 20) into alist
in form ((foo . 10) (bar . 20))."
(let iter ((klist klist) (result '()))
(if (null? klist)
result
(if (and (pair? klist) (pair? (cdr klist)) (key? (car klist)))
(begin
(log ":::" (cadr klist))
(log "data" (. (cadr klist) "data"))
(iter (cddr klist) (cons (cons (key->string (car klist)) (cadr klist)) result)))))))
(define (make-empty-object)
(alist->object '()))
(define empty-object (make-empty-object))
(define klist->object (pipe klist->alist alist->object))
;; main function that give problems
(define (make-tags expr)
(log "make-tags" expr)
`(h ,(key->string (car expr))
,(klist->object (cadr expr))
,(if (not (null? (cddr expr)))
(if (and (pair? (caddr expr)) (let ((s (caaddr expr))) (and (symbol? s) (eq? s 'list))))
`(list->array (list ,#(map make-tags (cdaddr expr))))
(caddr expr)))))
(define-macro (with-tags expr)
(make-tags expr))
I call this macro using this code:
(define (view state actions)
(with-tags (:div ()
(list (:h1 () (value (cdr (assoc 'count (. state "counter")))))
(:button (:onclick (lambda () (--> actions (down 1)))) "-")
(:button (:onclick (lambda () (--> actions (up 1)))) "+")))))
which should expand to almost the same code:
(define (view state actions)
(h "div" (make-empty-object)
(list->array (list
(h "h1" (make-empty-object) (value (cdr (assoc 'count (. state "counter")))))
(h "button" (klist->object `(:onclick ,(lambda () (--> actions (down 1))))) "-")
(h "button" (klist->object `(:onclick ,(lambda () (--> actions (up 1))))) "+")))))
This function works. I have problem with expanded code using my macro that call the main function, don't know how LIPS should behave when it find:
(:onclick (lambda () (--> actions (down 1))))
inside code and you try to process it like this:
,(klist->object (cadr expr))
Right now my lisp works that lambda is marked as data (have data flag set to true this is a hack to prevent of recursive evaluation of some code from macros) and klist->object function get lambda code as list, instead of function.
How this should work in Scheme or Common Lisp? Should klist->object get function object (lambda get evaluated) or list structure with lambda as first symbol? If second then how I sould write my function and macro to evaluate lambda should I use eval (kind of hack to me).
Sorry don't know how to test this, with more bug free LISP.
EDIT:
I've tried to apply the hint from #jkiiski in guile (because in my lisp it was not working)
;; -*- sheme -*-
(define nil '())
(define (key? symbol)
"(key? symbol)
Function check if symbol is key symbol, have colon as first character."
(and (symbol? symbol) (eq? ":" (substring (symbol->string symbol) 0 1))))
(define (key->string symbol)
"(key->string symbol)
If symbol is key it convert that to string - remove colon."
(if (key? symbol)
(substring (symbol->string symbol) 1)))
(define (pair-map fn seq-list)
"(seq-map fn list)
Function call fn argument for pairs in a list and return combined list with
values returned from function fn. It work like the map but take two items from list"
(let iter ((seq-list seq-list) (result '()))
(if (null? seq-list)
result
(if (and (pair? seq-list) (pair? (cdr seq-list)))
(let* ((first (car seq-list))
(second (cadr seq-list))
(value (fn first second)))
(if (null? value)
(iter (cddr seq-list) result)
(iter (cddr seq-list) (cons value result))))))))
(define (klist->alist klist)
"(klist->alist klist)
Function convert klist in form (:foo 10 :bar 20) into alist
in form ((foo . 10) (bar . 20))."
(pair-map (lambda (first second)
(if (key? first)
(cons (key->string first) second))) klist))
(define (h props . rest)
(display props)
(display rest)
(cons (cons 'props props) (cons (cons 'rest rest) nil)))
(define (make-tags expr)
`(h ,(key->string (car expr))
(klist->alist (list ,#(cadr expr)))
,(if (not (null? (cddr expr)))
(if (and (pair? (caddr expr)) (let ((s (caaddr expr))) (and (symbol? s) (eq? s 'list))))
`(list->array (list ,#(map make-tags (cdaddr expr))))
(caddr expr)))))
(define-macro (with-tags expr)
(make-tags expr))
(define state '((count . 10)))
(define xxx (with-tags (:div ()
(list (:h1 () (cdr (assoc 'count state)))
(:button (:onclick (lambda () (display "down"))) "-")
(:button (:onclick (lambda () (display "up"))) "+")))))
but got error:
ERROR: Unbound variable: :onclick
I've found solution for my lisp, Here is code:
(define (pair-map fn seq-list)
"(seq-map fn list)
Function call fn argument for pairs in a list and return combined list with
values returned from function fn. It work like the map but take two items from list"
(let iter ((seq-list seq-list) (result '()))
(if (null? seq-list)
result
(if (and (pair? seq-list) (pair? (cdr seq-list)))
(let* ((first (car seq-list))
(second (cadr seq-list))
(value (fn first second)))
(if (null? value)
(iter (cddr seq-list) result)
(iter (cddr seq-list) (cons value result))))))))
(define (make-tags expr)
(log "make-tags" expr)
`(h ,(key->string (car expr))
(alist->object (quasiquote
;; create alist with unquote for values and keys as strings
,#(pair-map (lambda (car cdr)
(cons (cons (key->string car) (list 'unquote cdr))))
(cadr expr))))
,(if (not (null? (cddr expr)))
(if (and (pair? (caddr expr)) (let ((s (caaddr expr))) (and (symbol? s) (eq? s 'list))))
`(list->array (list ,#(map make-tags (cdaddr expr))))
(caddr expr)))))
So in my code I'm writing some kind of meta macro I'm writing quasiquote as list that will get evaluated the same as if I use in my original code:
(klist->object `(:onclick ,(lambda () (--> actions (down 1)))))
I'm using alist->object and new function pair-map, so I can unquote the value and convert key symbol to string.
is this how it should be implemented in scheme? not sure If I need to fix my lisp or macros are working correctly there.

How to avoid eval in defmacro?

I write a macro that accepts a list of lambdas to be called and generates a function. The lambdas are always evaluated in defun argument list, but not in defmacro. How can I avoid call to eval inside defmacro?
This code works:
(defmacro defactor (name &rest fns)
(let ((actors (gensym)))
`(let (;(,actors ',fns)
(,actors (loop for actor in ',fns
collect (eval actor)))) ; This eval I want to avoid
(mapcar #'(lambda (x) (format t "Actor (type ~a): [~a]~&" (type-of x) x)) ,actors)
(defun ,name (in out &optional (pos 0))
(assert (stringp in))
(assert (streamp out))
(assert (or (plusp pos) (zerop pos)))
(loop for actor in ,actors
when (funcall actor in out pos)
return it)))))
;; Not-so-relevant use of defactor macros
(defactor invert-case
#'(lambda (str out pos)
(let ((ch (char str pos)))
(when (upper-case-p ch)
(format out "~a" (char-downcase ch))
(1+ pos))))
#'(lambda (str out pos)
(let ((ch (char str pos)))
(when (lower-case-p ch)
(format out "~a" (char-upcase ch))
(1+ pos)))))
This code evaluates as expected to:
Actor (type FUNCTION): [#<FUNCTION (LAMBDA (STR OUT POS)) {100400221B}>]
Actor (type FUNCTION): [#<FUNCTION (LAMBDA (STR OUT POS)) {100400246B}>]
INVERT-CASE
And its usage is:
;; Complete example
(defun process-line (str &rest actors)
(assert (stringp str))
(with-output-to-string (out)
(loop for pos = 0 then (if success success (1+ pos))
for len = (length str)
for success = (loop for actor in actors
for ln = len
for result = (if (< pos len)
(funcall actor str out pos)
nil)
when result return it)
while (< pos len)
unless success do (format out "~a" (char str pos)))))
(process-line "InVeRt CaSe" #'invert-case) ; evaluates to "iNvErT cAsE" as expected
Without eval, the defactor above evaluates to:
Actor (type CONS): [#'(LAMBDA (STR OUT POS)
(LET ((CH (CHAR STR POS)))
(WHEN (UPPER-CASE-P CH)
(FORMAT OUT ~a (CHAR-DOWNCASE CH))
(1+ POS))))]
Actor (type CONS): [#'(LAMBDA (STR OUT POS)
(LET ((CH (CHAR STR POS)))
(WHEN (LOWER-CASE-P CH)
(FORMAT OUT ~a (CHAR-UPCASE CH))
(1+ POS))))]
and all the rest obviously doesn't work.
If I transform defmacro into defun, it doesn't need eval:
(defun defactor (name &rest fns)
(defun name (in out &optional (pos 0))
(assert (stringp in))
(assert (streamp out))
(assert (or (plusp pos) (zerop pos)))
(loop for actor in fns
when (funcall actor in out pos)
return it)))
However, it always defines the function name instead of the passed function name argument (which should be quoted).
Is it possible to write defactor with the possibility to pass the function name unlike defun version, and without eval in macro version of it?
You're making things more complex than necessary with the first loop... just collect the parameters instead
(defmacro defactor (name &rest fns)
(let ((actors (gensym)))
`(let ((,actors (list ,#fns)))
(mapcar #'(lambda (x) (format t "Actor (type ~a): [~a]~&" (type-of x) x)) ,actors)
(defun ,name (in out &optional (pos 0))
(assert (stringp in))
(assert (streamp out))
(assert (or (plusp pos) (zerop pos)))
(loop for actor in ,actors
when (funcall actor in out pos)
return it)))))
This mostly doesn’t need to be a macro as-is. You can mostly use a helper function:
(defun make-actor (&rest funs)
(lambda (in out &optional (pos 0)
(loop for actor in funs
when (funcall actor in out pos) return it)))
And write a simple macro:
(defmacro defactor (name &rest funs)
`(let ((f (make-actor ,#funs)))
(defun ,name (in out &optional (pos 0)) (funcall f in out pos))))
However this doesn’t gain much in terms of expressivity (you practically call the macro like a function) or efficiency (the compiler has to be quite clever to work out how to improve the code by inclining a bunch of complicated things).
Here is another way one might implement something like this:
(defmacro defactor (name (in out pos) &rest actors)
(let ((inv (gensym "IN"))
(outv (gensym "OUT"))
(posv (gensym "POS")))
`(defun ,name (,inv ,outv &optional (,posv 0))
;; TODO: (declare (type ...) ...)
(or ,#(loop for form in actors
collect `(let ((,in ,inv) (,out ,outv) (,pos ,posv)) ,form)))))
And then use it like:
(defactor invert-case (in out pos)
(let ((ch (char str pos)))
(when (upper-case-p ch)
(format out "~a" (char-downcase ch))
(1+ pos)))
(let ((ch (char str pos)))
(when (lower-case-p ch)
(format out "~a" (char-upcase ch))
(1+ pos))))

Mapping within macro without extra parentheses?

Say I have a macro like this:
(define-syntax (choose stx)
(define data (syntax->datum stx))
(define args (cadr data))
(define body (cddr data))
(define output
`(apply (case (car ,args)
,(map (lambda (choice)
`((,(car choice)) ,(cadr choice)))
body)
(else (displayln "error")))
(cdr ,args)))
(println output)
#'(void))
If I use this on something like this (there could be more options):
(choose args
("run" runsomething)
("del" delsomethingelse))
It transforms it to
(apply
(case (car args)
((("run") runsomething)
(("del") delsomethingelse))
(else (displayln "error")))
(cdr args))
Which is not valid code, because the map gave it extra parentheses. Instead I want it to give me this:
(apply
(case (car args)
(("run") runsomething)
(("del") delsomethingelse)
(else (displayln "error")))
(cdr args))
How could I do something like this?
Use unquote-splicing (aka ,#) to get rid of the list surrounding map.
Example:
(define xs '(a b c))
`(1 2 ,xs 3 4) ; => '(1 2 (a b c) 3 4)
`(1 2 ,#xs 3 4) ; => '(1 2 a b c 3 4)
However I notice that you use syntax->datum on the input stx
of the syntax transformer. That removes lexical information, which
could end up causing problems. It recommend using either syntax-case
or syntax-parse, which use pattern matching to pick out the elements
of the input syntax and templates to generate the output.
(define-syntax (choose stx)
(syntax-case stx ()
[(_choose args
(datum fun-expr)
...)
#'(apply (case (car args)
[(datum) fun-expr]
...)
(cdr args))]))
(define (run-it . xs) (list 'ran-it xs))
(define (del-it . xs) (list 'delt-it xs))
(choose (list "run" 1 2 3)
("run" run-it)
("del" del-it))
Output: '(ran-it (1 2 3))

Scheme; Error Holes in a Macro List

So for a college assignment we've been asked to work with macros and I'm finding it hard to understand how to implement code in scheme (we went from reversing a string to building an interpreter in one lecture).
(define macro-alist
`((and ,(λ (e)
(let ((forms (cdr e)))
(cond ((null? forms) '#t)
((null? (cdr forms)) (car forms))
(else `(if ,(car forms) (and ,#(cdr forms)) #f))))))
;(or ,error)
;(let ,error)
;(cond ,error)
(if ,(λ (e) (let ((guard (cadr e))
(then-part (caddr e))
(else-part (cadddr e)))
`((%if ,guard (λ () ,then-part) (λ () ,else-part))))))
))
We were asked to 'fill in the error holds in macro-alist' for the weekend and I'm finding it difficult.
I found some resources and combining them with my own brief knowledge I have :
`((or ,(lambda (e)
(and (list-strictly-longer-than? e 0)
(equal? (list-ref e 0) 'or)
(letrec ([visit (lambda (i)
(if(null? i)
#t
(and (is-exression? (car i))
(visit (cdr i)))))])
(visit (cdr e)))))))
`((let ,(lambda (e)
(and (proper-list-of-given-length? e 3)
(equal? (car e) 'let)
(list? (cadr e))
(is-expression? (list-ref e 2))
(lectrec ([visit (trace-lambda visit (i a)
(if(null? i)
#t
(and (proper-list-of-given-length? (car i) 2)
(is-identifier? (caar i))
(is-expression? (cadar i))
(not (member (caar i) a))
(visit (cdr i) (cons (caar i) a)))))])
(visit (cadr e) '()))))))
`((cond ,(lambda (e)
(and (list-strictly-longer-than? e 1)
(equal? (car v) 'cond)
(lectrec ([visit (lambda (i)
(if (null? (cdr i))
(is-else-clause? (car i))
(if (pair? (cdr i))
(and (cond? (car i))
(visit (cdr i))))))])
(visit (cdr e)))))))
For or, let and cond. I'm wondering if these are correct or if I'm close. I don't understand much about macros or scheme in general so some information/help on what to do would be appreciated.
If you look at the implementation of and:
(define expand-and
(λ (e)
(let ((forms (cdr e)))
(cond ((null? forms) '#t)
((null? (cdr forms)) (car forms))
(else `(if ,(car forms) (and ,#(cdr forms)) #f))))))
(expand-and '(and)) ; ==> #t
(expand-and '(and a)) ; ==> a
(expand-and '(and a b)) ; ==> (if a (and b) #f)
I notice two things. It doesn't really double check that the first element is and or if it's a list. Perhaps the interpreter doesn't use this unless it has checked this already?
Secondly it doesn't seem like you need to expand everything. As you see you might end up with some code + and with fewer arguments. No need for recursion since the evaluator will do that for you.
I think you are overthinking it. For or it should be very similar:
(expand-or '(or)) ; ==> #f
(expand-and '(or a b c)) ; ==> (let ((unique-var a)) (if unique-var unique-var (or b c)))
The let binding prevents double evaluation of a but if you have no side effects you might just rewrite it to (if a a (or b)). As with and or might expand to use or with fewer arguments than the original. This trick you can do with cond as well:
(cond (a b c)
...) ; ==>
(if a
(begin b c)
(cond ...))
let does not need this since it's perhaps the simplest one if you grasp map:
(let ((a x) (c y))
body ...) ; ==>
((lambda (a c) body ...) x y)
The report has examples of how the macros for these are made, but they might not be the simplest to rewrite to functions that takes code as structure like your interpeter. However using the report to understand the forms would perhaps worked just as well as posting a question here on SO.

Macros That Write Macros - Compile Error

When I compile the following code, SBCL complains that g!-unit-value and g!-unit are undefined. I'm not sure how to debug this. As far as I can tell, flatten is failing.
When flatten reaches the unquoted part of defunits, it seems like the entire part is being treated as an atom. Does that sound correct?
The following uses code from the book Let over Lambda:
Paul Graham Utilities
(defun symb (&rest args)
(values (intern (apply #'mkstr args))))
(defun mkstr (&rest args)
(with-output-to-string (s)
(dolist (a args) (princ a s))))
(defun group (source n)
(if (zerop n) (error "zero length"))
(labels ((rec (source acc)
(let ((rest (nthcdr n source)))
(if (consp rest)
(rec rest (cons (subseq source 0 n) acc))
(nreverse (cons source acc))))))
(if source (rec source nil) nil)))
(defun flatten (x)
(labels ((rec (x acc)
(cond ((null x) acc)
((atom x) (cons x acc))
(t (rec (car x) (rec (cdr x) acc))))))
(rec x nil)))
Let Over Lambda Utilities - Chapter 3
(defmacro defmacro/g! (name args &rest body)
(let ((g!-symbols (remove-duplicates
(remove-if-not #'g!-symbol-p
(flatten body)))))
`(defmacro ,name ,args
(let ,(mapcar
(lambda (g!-symbol)
`(,g!-symbol (gensym ,(subseq
(symbol-name g!-symbol)
2))))
g!-symbols)
,#body))))
(defun g!-symbol-p (symbol-to-test)
(and (symbolp symbol-to-test)
(> (length (symbol-name symbol-to-test)) 2)
(string= (symbol-name symbol-to-test)
"G!"
:start1 0
:end1 2)))
(defmacro defmacro! (name args &rest body)
(let* ((o!-symbols (remove-if-not #'o!-symbol-p args))
(g!-symbols (mapcar #'o!-symbol-to-g!-symbol o!-symbols)))
`(defmacro/g! ,name ,args
`(let ,(mapcar #'list (list ,#g!-symbols) (list ,#o!-symbols))
,(progn ,#body)))))
(defun o!-symbol-p (symbol-to-test)
(and (symbolp symbol-to-test)
(> (length (symbol-name symbol-to-test)) 2)
(string= (symbol-name symbol-to-test)
"O!"
:start1 0
:end1 2)))
(defun o!-symbol-to-g!-symbol (o!-symbol)
(symb "G!" (subseq (symbol-name o!-symbol) 2)))
Let Over Lambda - Chapter 5
(defun defunits-chaining (u units prev)
(if (member u prev)
(error "~{ ~a~^ depends on~}"
(cons u prev)))
(let ((spec (find u units :key #'car)))
(if (null spec)
(error "Unknown unit ~a" u)
(let ((chain (second spec)))
(if (listp chain)
(* (car chain)
(defunits-chaining
(second chain)
units
(cons u prev)))
chain)))))
(defmacro! defunits (quantity base-unit &rest units)
`(defmacro ,(symb 'unit-of- quantity)
(,g!-unit-value ,g!-unit)
`(* ,,g!-unit-value
,(case ,g!-unit
((,base-unit) 1)
,#(mapcar (lambda (x)
`((,(car x))
,(defunits-chaining
(car x)
(cons
`(,base-unit 1)
(group units 2))
nil)))
(group units 2))))))
This is kind of tricky:
Problem: you assume that backquote/comma expressions are plain lists.
You need to ask yourself this question:
What is the representation of a backquote/comma expression?
Is it a list?
Actually the full representation is unspecified. See here: CLHS: Section 2.4.6.1 Notes about Backquote
We are using SBCL. See this:
* (setf *print-pretty* nil)
NIL
* '`(a ,b)
(SB-INT:QUASIQUOTE (A #S(SB-IMPL::COMMA :EXPR B :KIND 0)))
So a comma expression is represented by a structure of type SB-IMPL::COMMA. The SBCL developers thought that this representation helps when such backquote lists need to be printed by the pretty printer.
Since your flatten treats structures as atoms, it won't look inside...
But this is the specific representation of SBCL. Clozure CL does something else and LispWorks again does something else.
Clozure CL:
? '`(a ,b)
(LIST* 'A (LIST B))
LispWorks:
CL-USER 87 > '`(a ,b)
(SYSTEM::BQ-LIST (QUOTE A) B)
Debugging
Since you found out that somehow flatten was involved, the next debugging steps are:
First: trace the function flatten and see with which data it is called and what it returns.
Since we are not sure what the data actually is, one can INSPECT it.
A debugging example using SBCL:
* (defun flatten (x)
(inspect x)
(labels ((rec (x acc)
(cond ((null x) acc)
((atom x) (cons x acc))
(t (rec (car x) (rec (cdr x) acc))))))
(rec x nil)))
STYLE-WARNING: redefining COMMON-LISP-USER::FLATTEN in DEFUN
FLATTEN
Above calls INSPECT on the argument data. In Common Lisp, the Inspector usually is something where one can interactively inspect data structures.
As an example we are calling flatten with a backquote expression:
* (flatten '`(a ,b))
The object is a proper list of length 2.
0. 0: SB-INT:QUASIQUOTE
1. 1: (A ,B)
We are in the interactive Inspector. The commands now available:
> help
help for INSPECT:
Q, E - Quit the inspector.
<integer> - Inspect the numbered slot.
R - Redisplay current inspected object.
U - Move upward/backward to previous inspected object.
?, H, Help - Show this help.
<other> - Evaluate the input as an expression.
Within the inspector, the special variable SB-EXT:*INSPECTED* is bound
to the current inspected object, so that it can be referred to in
evaluated expressions.
So the command 1 walks into the data structure, here a list.
> 1
The object is a proper list of length 2.
0. 0: A
1. 1: ,B
Walk in further:
> 1
The object is a STRUCTURE-OBJECT of type SB-IMPL::COMMA.
0. EXPR: B
1. KIND: 0
Here the Inspector tells us that the object is a structure of a certain type. That's what we wanted to know.
We now leave the Inspector using the command q and the flatten function continues and returns a value:
> q
(SB-INT:QUASIQUOTE A ,B)
For anyone else who is trying to get defmacro! to work on SBCL, a temporary solution to this problem is to grope inside the unquote structure during the flatten procedure recursively flatten its contents:
(defun flatten (x)
(labels ((flatten-recursively (x flattening-list)
(cond ((null x) flattening-list)
((eq (type-of x) 'SB-IMPL::COMMA) (flatten-recursively (sb-impl::comma-expr x) flattening-list))
((atom x) (cons x flattening-list))
(t (flatten-recursively (car x) (flatten-recursively (cdr x) flattening-list))))))
(flatten-recursively x nil)))
But this is horribly platform dependant. If I find a better way, I'll post it.
In case anyone's still interested in this one, here are my three cents. My objection to the above modification of flatten is that it might be more naturally useful as it were originally, while the problem with representations of unquote is rather endemic to defmacro/g!. I came up with a not-too-pretty modification of defmacro/g! using features to decide what to do. Namely, when dealing with non-SBCL implementations (#-sbcl) we proceed as before, while in the case of SBCL (#+sbcl) we dig into the sb-impl::comma structure, use its expr attribute when necessary and use equalp in remove-duplicates, as we are now dealing with structures, not symbols. Here's the code:
(defmacro defmacro/g! (name args &rest body)
(let ((syms (remove-duplicates
(remove-if-not #-sbcl #'g!-symbol-p
#+sbcl #'(lambda (s)
(and (sb-impl::comma-p s)
(g!-symbol-p (sb-impl::comma-expr s))))
(flatten body))
:test #-sbcl #'eql #+sbcl #'equalp)))
`(defmacro ,name ,args
(let ,(mapcar
(lambda (s)
`(#-sbcl ,s #+sbcl ,(sb-impl::comma-expr s)
(gensym ,(subseq
#-sbcl
(symbol-name s)
#+sbcl
(symbol-name (sb-impl::comma-expr s))
2))))
syms)
,#body))))
It works with SBCL. I have yet to test it thoroughly on other implementations.