Given a set of questions that have linked survey and category id:
> db.questions.find().toArray();
[
{
"_id" : ObjectId("4fda05bc322b1c95b531ac25"),
"id" : 1,
"name" : "Question 1",
"category_id" : 1,
"survey_id" : 1,
"score" : 5
},
{
"_id" : ObjectId("4fda05cb322b1c95b531ac26"),
"id" : 2,
"name" : "Question 2",
"category_id" : 1,
"survey_id" : 1,
"score" : 3
},
{
"_id" : ObjectId("4fda05d9322b1c95b531ac27"),
"id" : 3,
"name" : "Question 3",
"category_id" : 2,
"survey_id" : 1,
"score" : 4
},
{
"_id" : ObjectId("4fda4287322b1c95b531ac28"),
"id" : 4,
"name" : "Question 4",
"category_id" : 2,
"survey_id" : 1,
"score" : 7
}
]
I can find the category average with:
db.questions.aggregate(
{ $group : {
_id : "$category_id",
avg_score : { $avg : "$score" }
}
}
);
{
"result" : [
{
"_id" : 1,
"avg_score" : 4
},
{
"_id" : 2,
"avg_score" : 5.5
}
],
"ok" : 1
}
How can I get the average of category averages (note this is different than simply averaging all questions)? I would assume I would do multiple group operations but this fails:
> db.questions.aggregate(
... { $group : {
... _id : "$category_id",
... avg_score : { $avg : "$score" },
... }},
... { $group : {
... _id : "$survey_id",
... avg_score : { $avg : "$score" },
... }}
... );
{
"errmsg" : "exception: the _id field for a group must not be undefined",
"code" : 15956,
"ok" : 0
}
>
It's important to understand that the operations in the argument to aggregate() form a pipeline. This meant that the input to any element of the pipeline is the stream of documents produced by the previous element in the pipeline.
In your example, your first query creates a pipeline of documents that look like this:
{
"_id" : 2,
"avg_score" : 5.5
},
{
"_id" : 1,
"avg_score" : 4
}
This means that the second element of the pipline is seeing a series of documents where the only keys are "_id" and "avg_score". The keys "category_id" and "score" no longer exist in this document stream.
If you want to further aggregate on this stream, you'll have to aggregate using the keys that are seen at this stage in the pipeline. Since you want to average the averages, you need to put in a single constant value for the _id field, so that all of the input documents get grouped into a single result.
The following code produces the correct result:
db.questions.aggregate(
{ $group : {
_id : "$category_id",
avg_score : { $avg : "$score" },
}
},
{ $group : {
_id : "all",
avg_score : { $avg : "$avg_score" },
}
}
);
When run, it produces the following output:
{
"result" : [
{
"_id" : "all",
"avg_score" : 4.75
}
],
"ok" : 1
}
Related
I have produced the below output using mongodb aggregation (including $group pipeline inside levelsCount field) :
{
"_id" : "1",
"name" : "First",
"levelsCount" : [
{ "_id" : "level_One", "levelNum" : 1, "count" : 1 },
{ "_id" : "level_Three", "levelNum" : 3, "count" : 1 },
{ "_id" : "level_Four", "levelNum" : 4, "count" : 8 }
]
}
{
"_id" : "2",
"name" : "Second",
"levelsCount" : [
{ "_id" : "level_One", "levelNum" : 1, "count" : 5 },
{ "_id" : "level_Two", "levelNum" : 2, "count" : 2 },
{ "_id" : "level_Three", "levelNum" : 3, "count" : 1 },
{ "_id" : "level_Four", "levelNum" : 4, "count" : 3 }
]
}
{
"_id" : "3",
"name" : "Third",
"levelsCount" : [
{ "_id" : "level_One", "levelNum" : 1, "count" : 1 },
{ "_id" : "level_Two", "levelNum" : 2, "count" : 3 },
{ "_id" : "level_Three", "levelNum" : 3, "count" : 2 },
{ "_id" : "level_Four", "levelNum" : 4, "count" : 3 }
]
}
Now, I need to sort these documents based on the levelNum and count fields of levelsCount array elements. I.e. If two documents both had the count 5 forlevelNum: 1 (level_One), then the sort goes to compare the count of levelNum: 2 (level_Two) field and so on.
I see how $sort pipeline would work on multiple fields (Something like { $sort : { level_One : 1, level_Two: 1 } }), But the problem is how to access those values of levelNum of each array element and set that value as a field name to do sorting on that. (I couldn't handle it even after $unwinding the levelsCount array).
P.s: The initial order of levelsCount array's elements may differ on each document and is not important.
Edit:
The expected output of the above structure would be:
// Sorted result:
{
"_id" : "2",
"name" : "Second",
"levelsCount" : [
{ "_id" : "level_One", "levelNum" : 1, "count" : 5 }, // "level_One's count: 5" is greater than "level_One's count: 1" in two other documents, regardless of other level_* fields. Therefore this whole document with "name: Second" is ordered first.
{ "_id" : "level_Two", "levelNum" : 2, "count" : 2 },
{ "_id" : "level_Three", "levelNum" : 3, "count" : 1 },
{ "_id" : "level_Four", "levelNum" : 4, "count" : 3 }
]
}
{
"_id" : "3",
"name" : "Third",
"levelsCount" : [
{ "_id" : "level_One", "levelNum" : 1, "count" : 1 },
{ "_id" : "level_Two", "levelNum" : 2, "count" : 3 }, // "level_Two's count" in this document exists with value (3) while the "level_Two" doesn't exist in the below document which mean (0) value for count. So this document with "name: Third" is ordered higher than the below document.
{ "_id" : "level_Three", "levelNum" : 3, "count" : 2 },
{ "_id" : "level_Four", "levelNum" : 4, "count" : 3 }
]
}
{
"_id" : "1",
"name" : "First",
"levelsCount" : [
{ "_id" : "level_One", "levelNum" : 1, "count" : 1 },
{ "_id" : "level_Three", "levelNum" : 3, "count" : 1 },
{ "_id" : "level_Four", "levelNum" : 4, "count" : 8 }
]
}
Of course, I'd prefer to have an output document in the below format, But the first problem is to sort all docs:
{
"_id" : "1",
"name" : "First",
"levelsCount" : [
{ "level_One" : 1 },
{ "level_Three" : 1 },
{ "level_Four" : 8 }
]
}
You can sort by levelNum as descending order and count as ascending order,
db.collection.aggregate([
{
$sort: {
"levelsCount.levelNum": -1,
"levelsCount.count": 1
}
}
])
Playground
For key-value format result of levelsCount array,
$map to iterate loop of levelsCount array
prepare key-value pair array and convert to object using $arrayToObject
{
$addFields: {
levelsCount: {
$map: {
input: "$levelsCount",
in: {
$arrayToObject: [
[{ k: "$$this._id", v: "$$this.levelNum" }]
]
}
}
}
}
}
Playground
I have a data as follows:
> db.PQRCorp.find().pretty()
{
"_id" : 0,
"name" : "Ancy",
"results" : [
{
"evaluation" : "term1",
"score" : 1.463179736705023
},
{
"evaluation" : "term2",
"score" : 11.78273309957772
},
{
"evaluation" : "term3",
"score" : 6.676176060654615
}
]
}
{
"_id" : 1,
"name" : "Mark",
"results" : [
{
"evaluation" : "term1",
"score" : 5.89772766299929
},
{
"evaluation" : "term2",
"score" : 12.7726680028769
},
{
"evaluation" : "term3",
"score" : 2.78092882672992
}
]
}
{
"_id" : 2,
"name" : "Jeff",
"results" : [
{
"evaluation" : "term1",
"score" : 36.78917882992872
},
{
"evaluation" : "term2",
"score" : 2.883687879200287
},
{
"evaluation" : "term3",
"score" : 9.882668212003763
}
]
}
What I want to achieve is ::Find employees who failed in aggregate (term1 + term2 + term3)
What I am doing and eventually getting is:
db.PQRCorp.aggregate([
{$unwind:"$results"},
{ $group: {_id: "$id",
'totalTermScore':{ $sum:"$results.score" }
}
}])
OUTPUT:{ "_id" : null, "totalTermScore" : 90.92894831067625 }
Simply I am getting a output of a flat sum of all scores. What I want is, to sum terms 1 , 2 and 3 separately for separate employees.
Please can someone help me. I am new to MongoDB (quite evident though).
You do not need to use $unwind and $group here... A simple $project query can $sum your entire score...
db.PQRCorp.aggregate([
{ "$project": {
"name": 1,
"totalTermScore": {
"$sum": "$results.score"
}
}}
])
I'm doing a fuzzy match to an input sentence, and I currently have a step in the AF like this:
{ "$group" : { "_id" : "$_id" , "score" : { "$sum" : 1}}}
but I'd like to be able to score shorter matches higher and want to do something like:
{ "$group" : { "_id" : "$_id" , "score" : { "$sum" : "1 / $length"}}}
Is something like this possible?
Yes, it should be possible (assuming $length is a field name in your documents), but the command should look like this:
{ "$group" : { "_id" : "$_id" , "score" : { $sum : {$divide: [1, "$length"]}}}}
You can find more details about possible math expressions on this page.
I guess you want something like this. the default "_id" values are unique, so probably you want to group some other parameter. So I used another parameter idd, instead of _id here.
> db.tmp1.aggregate({'$group':{'_id':'$idd', 'count':{'$sum':1} }},{ $project : { _id: 1, suminv :{$divide:[1, '$count'] } } } );
{ "_id" : 2, "suminv" : 0.3333333333333333 }{ "_id" : 1, "suminv" : 0.5 }
> db.tmp1.find();
{ "_id" : ObjectId("572a5a74024dc1f2fe4b432b"), "idd" : 1, "score" : 2 }
{ "_id" : ObjectId("572a5a79024dc1f2fe4b432c"), "idd" : 1, "score" : 1 }
{ "_id" : ObjectId("572a5a82024dc1f2fe4b432d"), "idd" : 2, "score" : 1 }
{ "_id" : ObjectId("572a5a86024dc1f2fe4b432e"), "idd" : 2, "score" : 2 }
{ "_id" : ObjectId("572a5a8e024dc1f2fe4b432f"), "idd" : 2, "score" : 3 }
I have a collection called transaction with below documents,
/* 0 */
{
"_id" : ObjectId("5603fad216e90d53d6795131"),
"statusId" : "65c719e6727d",
"relatedWith" : "65c719e67267",
"status" : "A",
"userId" : "100",
"createdTs" : ISODate("2015-09-24T13:15:36.609Z")
}
/* 1 */
{
"_id" : ObjectId("5603fad216e90d53d6795134"),
"statusId" : "65c719e6727d",
"relatedWith" : "65c719e6726d",
"status" : "B",
"userId" : "100",
"createdTs" : ISODate("2015-09-24T13:14:31.609Z")
}
/* 2 */
{
"_id" : ObjectId("5603fad216e90d53d679512e"),
"statusId" : "65c719e6727d",
"relatedWith" : "65c719e6726d",
"status" : "C",
"userId" : "100",
"createdTs" : ISODate("2015-09-24T13:13:36.609Z")
}
/* 3 */
{
"_id" : ObjectId("5603fad216e90d53d6795132"),
"statusId" : "65c719e6727d",
"relatedWith" : "65c719e6726d",
"status" : "D",
"userId" : "100",
"createdTs" : ISODate("2015-09-24T13:16:36.609Z")
}
When I run the below Aggregation query without $group,
db.transaction.aggregate([
{
"$match": {
"userId": "100",
"statusId": "65c719e6727d"
}
},
{
"$sort": {
"createdTs": -1
}
}
])
I get the result in expected sorting order. i.e Sort createdTs in descending order (Minimal result)
/* 0 */
{
"result" : [
{
"_id" : ObjectId("5603fad216e90d53d6795132"),
"createdTs" : ISODate("2015-09-24T13:16:36.609Z")
},
{
"_id" : ObjectId("5603fad216e90d53d6795131"),
"createdTs" : ISODate("2015-09-24T13:15:36.609Z")
},
{
"_id" : ObjectId("5603fad216e90d53d6795134"),
"createdTs" : ISODate("2015-09-24T13:14:31.609Z")
},
{
"_id" : ObjectId("5603fad216e90d53d679512e"),
"createdTs" : ISODate("2015-09-24T13:13:36.609Z")
}
],
"ok" : 1
}
If I apply the below aggregation with $group, the resultant is inversely sorted(i.e Ascending sort)
db.transaction.aggregate([
{
"$match": {
"userId": "100",
"statusId": "65c719e6727d"
}
},
{
"$sort": {
"createdTs": -1
}
},
{
$group: {
"_id": {
"statusId": "$statusId",
"relatedWith": "$relatedWith",
"status": "$status"
},
"status": {$first: "$status"},
"statusId": {$first: "$statusId"},
"relatedWith": {$first: "$relatedWith"},
"createdTs": {$first: "$createdTs"}
}
}
]);
I get the result in inverse Order i.e. ** Sort createdTs in Ascending order**
/* 0 */
{
"result" : [
{
"_id" : ObjectId("5603fad216e90d53d679512e"),
"createdTs" : ISODate("2015-09-24T13:13:36.609Z")
},
{
"_id" : ObjectId("5603fad216e90d53d6795134"),
"createdTs" : ISODate("2015-09-24T13:14:31.609Z")
},
{
"_id" : ObjectId("5603fad216e90d53d6795131"),
"createdTs" : ISODate("2015-09-24T13:15:36.609Z")
},
{
"_id" : ObjectId("5603fad216e90d53d6795132"),
"createdTs" : ISODate("2015-09-24T13:16:36.609Z")
}
],
"ok" : 1
}
Where am I wrong ?
The $group stage doesn't insure the ordering of the results. See here the first paragraph.
If you want the results to be sorted after a $group, you need to add a $sort after the $group stage.
In your case, you should move the $sort after the $group and before you ask the question : No, the $sort won't be able to use an index after the $group like it does before the $group :-).
The internal algorithm of $group seems to keep some sort of ordering (reversed apparently), but I would not count on that and add a $sort.
You are not doing anything wrong here, Its a $group behavior in Mongodb
Lets have a look in this example
Suppose you have following doc in collection
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") }
{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") }
{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") }
{ "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") }
{ "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }
{ "_id" : 6, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-15T12:05:10Z") }
{ "_id" : 7, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T14:12:12Z") }
Now if you run this
db.collection.aggregate([{ $sort: { item: 1,date:1}} ] )
the output will be in ascending order of item and date.
Now if you add group stage in aggregation pipeline it will reverse the order.
db.collection.aggregate([{ $sort: { item: 1,date:1}},{$group:{_id:"$item"}} ] )
Output will be
{ "_id" : "xyz" }
{ "_id" : "jkl" }
{ "_id" : "abc" }
Now the solution for your problem
change "createdTs": -1 to "createdTs": 1 for group
Document looks like this:
{
"_id" : ObjectId("361de42f1938e89b179dda42"),
"user_id" : "u1",
"evaluator_id" : "e1",
"candidate_id" : ObjectId("54f65356294160421ead3ca1"),
"OVERALL_SCORE" : 150,
"SCORES" : [
{ "NAME" : "asd", "OBTAINED_SCORE" : 30}, { "NAME" : "acd", "OBTAINED_SCORE" : 36}
]
}
Aggregation function:
db.coll.aggregate([ {$unwind:"$SCORES"}, {$group : { _id : { user_id : "$user_id", evaluator_id : "$evaluator_id"}, AVG_SCORE : { $avg : "$SCORES.OBTAINED_SCORE" }}} ])
Suppose if there are two documents with same "user_id" (say u1) and different "evaluator_id" (say e1 and e2).
For example:
1) Average will work like this ((30 + 20) / 2 = 25). This is working for me.
2) But for { evaluator_id : "e1" } document, score is 30 for { "NAME" : "asd" } and { evaluator_id : "e2" } document, score is 0 for { "NAME" : "asd" }. In this case, I want the AVG_SCORE to be 30 only (not (30 + 0) / 2 = 15).
Is it possible through aggregation??
Could any one help me out.
It's possible by placing a $match between the $unwind and $group aggregation pipelines to first filter the arrays which match the specified condition to include in the average computation and that is, score array where the obtained score is not equal to 0 "SCORES.OBTAINED_SCORE" : { $ne : 0 }
db.coll.aggregate([
{
$unwind: "$SCORES"
},
{
$match : {
"SCORES.OBTAINED_SCORE" : { $ne : 0 }
}
},
{
$group : {
_id : {
user_id : "$user_id",
evaluator_id : "$evaluator_id"
},
AVG_SCORE : {
$avg : "$SCORES.OBTAINED_SCORE"
}
}
}
])
For example, the aggregation result for this document:
{
"_id" : ObjectId("5500aaeaa7ef65c7460fa3d9"),
"user_id" : "u1",
"evaluator_id" : "e1",
"candidate_id" : ObjectId("54f65356294160421ead3ca1"),
"OVERALL_SCORE" : 150,
"SCORES" : [
{
"NAME" : "asd",
"OBTAINED_SCORE" : 0
},
{
"NAME" : "acd",
"OBTAINED_SCORE" : 36
}
]
}
will yield:
{
"result" : [
{
"_id" : {
"user_id" : "u1",
"evaluator_id" : "e1"
},
"AVG_SCORE" : 36
}
],
"ok" : 1
}