Learning curve for PyDev-Eclipse and WingIDE --- which is steeper? - eclipse

I have been using WingIDE for python program development for several years, and in general I am satisfied with it (esp. with their technical support). The learning curve for WingIDE was rather steep (at least for me). I am now considering some projects that I will require that I work with PyDev-Eclipse.
What kind of learning curve (steep -> easy, or not steep -> not easy) might one expect with PyDev?

I don't think there's a right answer here... Experiences vary a lot (I'd suggest following the Getting started tutorial http://pydev.org/manual_101_root.html and then judging for yourself... I think the basics should be easy to grasp, but as with anything else, to really master it will take more time, especially getting used to shortcuts and discovering what it's capable of).

I agree with Fabio that there is no simple answer. For Wing, start with the Tutorial in the Help menu. That takes you through the basics you need to know to work with Wing and use the debugger, and you can learn the other tools and capabilities more slowly over time.

The choice of IDE is as personal as choosing a keyboard. But for both the experiences of others sometimes help to make a choice.
In my case Wing has made the difference between advancing my Python skills relatively quickly, and some months of being bogged down by not understanding basic concepts. I have really found that the functionality Wing offers to go through existing code helps to understand Python and existing code more quickly.
With Pydev I got bogged down in the complexities of Eclipse. With Wing I felt that I was standing on the shoulders of people who grokked Python deeply. Note the word "felt", it is a very subjective thing, and you should most definitely take some time to try out what works for you.
Some things about Wing that make me believe it has helped me learn Python much more quickly than I would have otherwise: The Auto-Enter Invocation Args setting which shows up the PEP-8 way of invoking arguments to standard functions you are calling. And the go-to-definition and find-points-of-use functions that I have used many times to try to figure out how existing code works. This may all be available elsewhere, but it just works immediately and in a very coherent way in Wing.

Related

Pair programming, mixed IDE environments?

Anyone got any experience of teams doing pair programming where there is a mixed IDE environment? I'm a long time IntelliJ user, others use Eclipse, which you may have heard of.
In my mind pair programming involves a lot of passing the keyboard between the programmers. But every time I get the keyboard I grind to a halt as I don't know to do anything anymore. (It's like suddenly I'm an idiot!)
Now I could, probably should, learn my way round Eclipse. (Not starting a holy war here about relative merits.) But I wonder if anyone else has got an opinion?
I don't see the need for passing the keyboard around. In my view, you work on part while the other half of your pair looks over your shoulder. Sometimes I imagine you would have to take the wheel, but generally not every 10 minutes. If he types for 4 hours, then you switch places, just switch IDEs at that time.
I agree you should learn the tools that are used, and if there is an actual published or documented standard you should follow it, but if you are allowed to use any IDE you want, then I don't see an issue. But if it inhibits your ability to deliver, then maybe you pair up with someone using the same IDE as you.
About 10 years too late for the OP, but this question is still highly ranked in search engines, so others interested in remote mixed environment pair programming can try CodeTogether. It's available for for IntelliJ, Eclipse, VS Code and IDEs based on them.
Participants join in a browser, but get a full IDE-like experience with IntelliSense, validation, reference searches, navigation, etc. CodeTogether is simple, fast, free, anonymous, and encrypted. The plugins/extensions are in the normal marketplaces/registries you'd expect and are also available on the website.
Full disclosure: I work for Genuitec, the makers of CodeTogether, and we really hope you enjoy it. Any constructive feedback on Gitter or GitHub is always appreciated.
I have not done this in a multi-IDE environment. But pairing is, to my mind, far and away the best way to learn IDE features. So you should come up to speed quickly on Eclipse, and your colleagues, likewise, should get a handle on IntelliJ in short order. Both of you will become better versed in both environments - and that's a good position from which to settle on a team IDE, should you choose to do so.
By comparison with other means of learning, pairing teaches you the features that are useful to you (or your pair, who probably has a similar set of needs). You learn almost by osmosis; as your pair uses a feature you may find yourself asking, "how did you do that?" or "what did you just do?" This is teaching you the features you need, exactly when you need them.
In your situation, there may be additional value: you may find yourself wanting a feature that your IDE offers; your pair may never have encountered it (but it might be in Eclipse, too). So you spend a minute tracking down that feature, and now both of you have learned new (and useful) functionality of the IDE.
Standardize your environment! As much as you need a common source style, I would argue you also need a common way of working, including having a common IDE. All kinds of settings, knowledge, plugins, etc. is much easier to share, including your example about pair programming.
In pair programming, the pair should standardize on an IDE.
My suggestion would be either to pair with another IntelliJ user or, if the rest of the group is on Eclipse, start learning Eclipse.
You're going to lose too much time switching between IDEs to gain the efficiencies of pair programming.
You could have both IDEs loaded on the pairing machine and switch between them as needed, but I'd recommend standardizing IDEs with your pairing partner. You might want to bring this question up in your next retrospective and see what the team consensus is.

What IDE features should I learn to use

I'm a largely self-taught front-end developer only just making the transition into back-end development in order to be able to say yes to more projects.
I've found eclipse to be my favourite text editor for javascript and php, but I'm conscious that it (and other IDEs) have a whole load of features which I don't know how to use, or why I should want to use them.
I'd really appreciate some pointers on why using such-and-such a feature of an IDE helps you work more efficiently, write better code etc..., and maybe some links to useful sources of information.
Cheers
edit - I'm already converted to using ftp features and code explorer/function lists
You may find eclipse tips such as these interesting. But if your objective is to "write better code" then I think you need to look elsewhere. Understand the language you are using better, understand design patterns and the reasons whey people apply them, study testing techniques. There's so much else to spend your time on. Truly working smarter is the objective.
I would always advise learning what goes on behind the IDE and then using the IDE.
Get familiar with:
Build/Distribution processes (Like Make and others)
How compilation works, what are the component processes
How the IDE is generating things like autocomplete (scanning headers/source)
version control, get familiar with it on the command-line. It will mean you can deal with issues/requirements not filled by the IDE.
Once you know what goes on behind the scenes for the language/environment you are programming in ... the IDE is a bit mundane, just a modular text-editor on steroids.
Good luck
Maybe this is obvious, but in my opinion class/function/variable name refactoring is among the most essential features of any IDE. Constant refactoring is one of the secrets of making good code.
That's a bit of a difficult question to answer since most modern IDEs offer such a wide range of features. From a general standpoint, I'd become familiar with hot key combinations for repetitive tasks (saving, building, code folding, etc.) and how to install/enable/disable add-ons and plug-ins. That will make you more efficient.
As Aiden mentions, knowing how to to a build from the command line/compilation in general will be useful as well as version control systems. Get familiar with GIT and Subversion.
The IDE will not make you write better code. For that, you're going to need practice and some time spent reading/listening to podcasts. Read Robert Martin's "Clean Code" for starters.
Additionally, spend the time to learn proper TDD and the toolset(s) available for your IDE.

What inherited code has impressed or inspired you?

I've heard a ton of complaining over the years about inherited projects that us developers have to work with. The WTF site has tons of examples of code that make me actually mutter under my breath "WTF?"
But have any of you actually been presented with code that made you go, "Holy crap this was well thought out!" or "Wow, I never thought of that!"
What inherited code have you had to work with that made you smile and why?
Long ago, I was responsible for the Turbo C/C++ run-time library. Tanj Bennett wrote the original 80x87 floating point emulator in 16-bit assembler. I hadn't looked closely at Tanj's code since it worked well and didn't require attention. But we were making the move to 32-bits and the task fell to me to stretch the emulator.
If programming could ever be said to have something in common with art this was it.
Tanj's core math functions managed to keep an 80-bit floating point temporary result in five 16-bit registers without having to save and restore them from memory. X86 assembly programmers will understand just what an accomplishment this was. Register space was scarce and keeping five registers as your temp while simultaneously doing complex math was a beautiful site to behold.
If it was only a matter of clever coding that would have been enough to qualify it as art but it was more than that. Tanj had carefully picked the underlying math algorithms that would be most suitable for keeping the temp in registers. The result was a blazing-fast floating point emulator which was an important selling point for many of our customers.
By the time the 386 came along most people who cared about floating-point performance weren't using an emulator but we had to support Intel's 386SX so the emulator needed an overhaul. I rewrote the instruction-decode logic and exception handling but left the core math functions completely untouched.
In my first job, I was amazed to discover a "safe ID" class in the codebase (c++), which was wrapping numerical IDs in a class templated with an empty tag class, that ensured that the compiler would complain if you tried for example to compare or assign a UserId into an OrderId.
Not only did I made sure that I had an equivalent Id class in all subsequent codebases I would be using, but it actually opened my eyes on what the compiler could do to guarantee correctness and help writing stronger code.
The code that impresses me the most, and which I try to emulate - is code that seems too simple and easy to understand.
It is damn difficult to write that kind of code. :-)
I have a funny story to tell here.
I was working on this Javaish application, filled with getters & setters that did nothing but get or set and interfaces and everything ever invented to make code unreadable. One day I stumbled upon some code which seemed very well crafted -- it was basically an algorithm implementation that looked very elegant = few lines of readable code, even though it respected every possible rule the project had to adhere to (it was checkstyled automatically).
I couldn't figure out who on the team could have written such code. I was dying to discuss with him and share thoughts. Thankfully, we had switched to subversion (from cvs) a few months earlier and I quickly ran am 'svn blame'. I loled all over the place, seeing my name next to the implementation.
I had heard stories about people not remembering code they wrote 6 months back, code that is a nightmare to maintain. I could not believe such a thing could happen: how can you forget code you wrote? Well, now I'm convinced it can happen. Thankfully the code was alright and easy to extend, so I've only experienced half of the story.
Some VB6 code by another programmer at my company I came across that handled the error conditions very well (whether it be deal with them directly or log them).
Along with some rather complex code that was well commented.
I know this will bring a lot of answers like,
"I've never find good code before I step in" and variations.
I think the real problem there is not that there isn't good coders or excellent projects out there, is that there's an excess of NIH syndrome and the fact that no body likes code from others. The latter is just because you have to make an intellectual effort to understand it, a much bigger effort than you need to understand you own code so that you dislike it (it's making you think and work after all).
Personally I can remember (as everyone I guess) some cases of really bad code but also I remember some pretty well documented, elegant code.
Currently, the project that most impressed me was a very potent, Dynamic Workflow Engine, not only by the simplicity but also for the way it is coded. I can remember some very clever snippets here and there, as well as a beautiful metaprogramming library based on a full IDL developed by some friends of mine (Aspl.es)
I inherited a large bunch of code that was SO well written I actually spent the $40 online to find the guy, I went to his house and thanked him.
I think Rocky Lhotka should get the credit, but I had to touch a CSLA.NET application recently {in my private practice on the side} and I was very impressed with the orderliness of the code. The app worked extremely well, but the client needed a few extensions. The original author had died tragically, and the new guy was unsophisticated. He didn't understand CSLA.NET's business object based approach, and he wanted to do it all over again in cut-and-dried VB.NET, without any fancy framework.
So I got the call. Looking at a working example of WinForm binding and CSLA.NET was pretty instructive about a lot of things.
Symbian OS - the old core bit of it anyway, the bit that dated back to the Psion days or those who even today keep that spirit alive.
And sitting right along side it and all over it is all the new crap created by the lowest bidders hired by the big phone corporations. It was startling, you could actually feel in your bones whether a bit of the code-base was old or new somehow.
I remember when I wrote my bachelor thesis on type inference, my Pascal-to-Pascal 'compiler' was an extension of a Parser my supervisor programmed (in Java). It had a pretty good structure as far as I can remember, and for me who had never done any serious Object-oriented programming, it was quite a revelation.
I've been doing a lot of Eclipse plug-in development and often had to debug into the actual Eclipse source code. While I haven't "inherited" it in the sense that I'm not continuing work on it, I've always been impressed with the design and quality of the early core.

Getting your head around other people's code

I'm occasionally unfortunate enough to have to make alterations to very old, poorly not documented and poorly not designed code.
It often takes a long time to make a simple change because there is not much structure to the existing code and I really have to read a lot of code before I have a feel for where things would be.
What I think would help a lot in cases like this is a tool that would allow one to visualise an overview of the code, and then maybe even drill down for more detail. I suspect such a tool would be very hard to get right, given that is trying to find structure where there is little or none.
I guess this is not really a question, but rather a musing. I should make it into a question - What do others do to assist in getting their head around other peoples code, the good and the bad?
Hmm, this is a hard one, so much to say so little time ...
1) If you can run the code it makes life soooo much easier, breakpoints (especially conditional) break points are you friend.
2) A purists' approach would be to write a few unit tests, for known functionality, then refactor to improve code and understanding, then re-test. If things break, then create more unit tests - repeat until bored/old/moved to new project
3) ReSharper is good at showing where things are being used, what's calling a method for instance, it's static but a good start, and it helps with refactoring.
4) Many .net events are coded as public, and events can be a pain to debug at the best of times. Recode them to be private and use a property with add/remove. You can then use break point to see what is listening on an event.
BTW - I'm playing in the .Net space, and would love a tool to help do this kind of stuff, like Joel does anyone out there know of a good dynamic code reviewing tool?
I have been asked to take ownership of some NASTY code in the past - both work and "play".
Most of the amateurs I took over code for had just sort of evolved the code to do what they needed over several iterations. It was always a giant incestuous mess of library A calling B, calling back into A, calling C, calling B, etc. A lot of the time they'd use threads and not a critical section was to be seen.
I found the best/only way to get a handle on the code was start at the OS entry point [main()] and build my own call stack diagram showing the call tree. You don't really need to build a full tree at the outset. Just trace through the section(s) you're working on at each stage and you'll get a good enough handle on things to be able to run with it.
To top it all off, use the biggest slice of dead tree you can find and a pen. Laying it all out in front of you so you don't have to jump back and forward on screens or pages makes life so much simpler.
EDIT: There's a lot of talk about coding standards... they will just make poor code look consistent with good code (and usually be harder to spot). Coding standards don't always make maintaining code easier.
I do this on a regular basis. And have developed some tools and tricks.
Try to get a general overview (object diagram or other).
Document your findings.
Test your assumptions (especially for vague code).
The problem with this is that on most companies you are appreciated by result. That's why some programmers write poor code fast and move on to a different project. So you are left with the garbage, and your boss compares your sluggish progress with the quick and dirtu guy. (Luckily my current employer is different).
I generally use UML sequence diagrams of various key ways that the component is used. I don't know of any tools that can generate them automatically, but many UML tools such as BoUML and EA Sparx can create classes/operations from source code which saves some typing.
The definitive text on this situation is Michael Feathers' Working Effectively with Legacy Code. As S. Lott says get some unit tests in to establish behaviour of the lagacy code. Once you have those in you can begin to refactor. There seems to be a sample chapter available on the Object Mentor website.
I strongly recommend BOUML. It's a free UML modelling tool, which:
is extremely fast (fastest UML tool ever created, check out benchmarks),
has rock solid C++ import support,
has great SVG export support, which is important, because viewing large graphs in vector format, which scales fast in e.g. Firefox, is very convenient (you can quickly switch between "birds eye" view and class detail view),
is full featured, intensively developed (look at development history, it's hard to believe that so fast progress is possible).
So: import your code into BOUML and view it there, or export to SVG and view it in Firefox.
See Unit Testing Legacy ASP.NET Webforms Applications for advice on getting a grip on legacy apps via unit testing.
There are many similar questions and answers. Here's the search https://stackoverflow.com/search?q=unit+test+legacy
The point is that getting your head around legacy is probably easiest if you are writing unit tests for that legacy.
I haven't had great luck with tools to automate the review of poorly documented/executed code, cause a confusing/badly designed program generally translates to a less than useful model. It's not exciting or immediately rewarding, but I've had the best results with picking a spot and following the program execution line by line, documenting and adding comments as I go, and refactoring where applicable.
a good IDE (EMACS or Eclipse) could help in many cases. Also on a UNIX-platform, there are some tools for crossreferencing (etags, ctags) or checking (lint) or gcc with many many warning options turned on.
First, before trying to comprehend a function/method, i would refactor it a bit to fit your coding conventions (spaces, braces, indentation) and remove most of the comments if they seem to be wrong.
Then I would refactor and comment the parts you understood, and try to find/grep those parts over the whole source tree and refactor them there also.
Over the time, you get a nicer code, you like to work with.
I personally do a lot of drawing of diagrams, and figuring out the bones of the structure.
The fad de jour (and possibly quite rightly) has got me writing unit tests to test my assertions, and build up a safety net for changes I make to the system.
Once I get to a point where I'm comfortable enought knowing what the system does, I'll take a stab at fixing bugs in the sanest way possible, and hope my safety nets neared completion.
That's just me, however. ;)
i have actuaally been using the refactoring features of ReSharper to help m get a handle on a bunch of projects that i inherited recently. So, to figure out another programmer's very poorly structured, undocumented code, i actually start by refactoring it.
Cleaning up the code, renaming methods, classes and namespaces properly, extracting methods are all structural changes that can shed light on what a piece of code is supposed to do. It might sound counterintuitive to refactor code that you don't "know" but trut me, ReSharper really allows you to do this. Take for example the issue of red herring dead code. You see a method in a class or perhaps a strangely named variable. You can start by trying to lookup usages or, ungh, do a text search, but ReSharper will actually detect dead code and color it gray. As soon as you open a file you see in gray and with scroll bar flags what would have in the past been confusing red herrings.
There are dozens of other tricks and probably a number of other tools that can do similar things but i am a ReSharper junky.
Cheers.
Get to know the software intimately from a user's point of view. A lot can be learnt about the underlying structure by studying and interacting with the user interface(s).
Printouts
Whiteboards
Lots of notepaper
Lots of Starbucks
Being able to scribble all over the poor thing is the most useful method for me. Usually I turn up a lot of "huh, that's funny..." while trying to make basic code structure diagrams that turns out to be more useful than the diagrams themselves in the end. Automated tools are probably more helpful than I give them credit for, but the value of finding those funny bits exceeds the value of rapidly generated diagrams for me.
For diagrams, I look for mostly where the data is going. Where does it come in, where does it end up, and what does it go through on the way. Generally what happens to the data seems to give a good impression of the overall layout, and some bones to come back to if I'm rewriting.
When I'm working on legacy code, I don't attempt to understand the entire system. That would result in complexity overload and subsequent brain explosion.
Rather, I take one single feature of the system and try to understand completely how it works, from end to end. I will generally debug into the code, starting from the point in the UI code where I can find the specific functionality (since this is usually the only thing I'll be able to find at first). Then I will perform some action in the GUI, and drill down in the code all the way down into the database and then back up. This usually results in a complete understanding of at least one feature of the system, and sometimes gives insight into other parts of the system as well.
Once I understand what functions are being called and what stored procedures, tables, and views are involved, I then do a search through the code to find out what other parts of the application rely on these same functions/procs. This is how I find out if a change I'm going to make will break anything else in the system.
It can also sometimes be useful to attempt to make diagrams of the database and/or code structure, but sometimes it's just so bad or so insanely complex that it's better to ignore the system as a whole and just focus on the part that you need to change.
My big problem is that I (currently) have very large systems to understand in a fairly short space of time (I pity contract developers on this point) and don't have a lot of experience doing this (having previously been fortunate enough to be the one designing from the ground up.)
One method I use is to try to understand the meaning of the naming of variables, methods, classes, etc. This is useful because it (hopefully increasingly) embeds a high-level view of a train of thought from an atomic level.
I say this because typically developers will name their elements (with what they believe are) meaningfully and providing insight into their intended function. This is flawed, admittedly, if the developer has a defective understanding of their program, the terminology or (often the case, imho) is trying to sound clever. How many developers have seen keywords or class names and only then looked up the term in the dictionary, for the first time?
It's all about the standards and coding rules your company is using.
if everyone codes in different style, then it's hard to maintain other programmer code and etc, if you decide what standard you'll use have some rules, everything will be fine :) Note: that you don't have to make a lot of rules, because people should have possibility to code in style they like, otherwise you can be very surprised.

Is Micro Code Generation Considered Harmful?

I recently wrote a small tool to generate a class for each tier I hand write for the boring "forms over data" work where I spend almost 90% of my time (depressing I know) ... more on this as the economy improves ;)
My question is this - will using this tool instead of hand typing all this code from day to day actually hurt me as a developer? I feel like I will always be making changes to this tool and thus I "should" stay on top of the patterns used/ choices made/ etc... but some small part of me feels like I might lose my edge ... am I wrong?
If the tool can spit the code out without thought, then it probably saves you lots of thoughtless typing.
Writing the tool in the first place requires thinking, so I'd guess you'd be more "on the edge" maintaining and writing the tool.
That's good! Of course writing a tool to do all the job for you is impossible and wrong.
But automating repeatable tasks is always good - and sometimes writing specific types of code is repeatable.
It is even encouraged in the "Pragmatic Programmer" book.
Make sure that in the source control you have checked in a code generator and not its output (unless you have to modify the code later by hand)!
You are most definitely not wrong. I use code generators anywhere I can - I currently use CodeSmith to create my DAO's by looking at the database.
What edge are you afraid of losing? In my mind going to code generation is actually giving you an edge.
Larry Wall (of Perl fame) describes the three cardinal virtues of programming as Laziness, Impatience, and Hubris.
Congratulations! You have shown good laziness, in that you have identified some work you can pass off to an automated process and done so. (Bad laziness leads to cutting corners, procrastination, and generally postponing rather than eliminating work.) If you can successfully palm off some work onto another program, you are spending less time on annoying triviality and more on accomplishing things and learning.
Generate what you can. Code generation is one of the best tools I've picked up over the last 2 or 3 years. Typing the same code over and over (or copy and pasting it) is prone to error.
Spending less time doing something by having something/someone else do it, and more time researching better ways to do it will generally lead to doing it in a better way.
This doesn't have to just apply to programming....
Your code generator (at least in principle - I haven't looked at it myself) is The Right Thing, at least as far as it goes.
The next step would be to see whether you can, instead of generating all this redundant code, create a base class whose functionality matches the generated code and then derive your application code from it. Using inheritance rather than generation will allow you to benefit from improvements without needing to re-run the generator on all your projects. Perhaps more importantly, if you customize the generated code, the customizations would be lost if you re-run the generator, but customizations in a derived class will be preserved when the base class is changed.
No. Why do you think IDE's are so popular. Imagine if all the people who use Visual Studio had to programmatically create the GUI's without help from the IDE, it'd be terrible. I would be willing to bet most people who use VisualStudio won't know how to manualy create the forms they're creating in the IDE. But there's nothing wrong with that.
I believe in code generation wherever possible to remove the rote tasks of programming. You will not lose your edge, you will probably become a better programmer because you will spend more time working on the important and interesting stuff.
BTW, your tool sounds interesting. Have you released it anywhere?
Code generation is fine as long as you understand what you are generating. Physicists use calculators because they understand the formulas they are automating and realize that their precious time is better spent on important tasks.
Code generation is one of those invaluable DO:s that The Pragmatic Programmer advocates. I truly recommend that book. Here's a Pragmatic Programmer quick ref.
Its almost hypocritical not to code generate. Here we are automating all of these tasks that were traditionally done by hand... and yet many of us still hand crank all of our code, even if it can be easily generated.
My only experience with code generation is the macros of Common Lisp. They are used all the time. Everything that automats repetitive tasks is beneficial; that is what programming is about.
Read the story of Mac.
Imagine that each time you made a change to the tool and regenerated your code, that you made that design change by hand on all of your modules.
Since I've started generating code and gotten up to speed, I've found that I rarely get bugs in the generated code.
I find that writing code gen does help me learn the nuances of good architecture. You start seeing common patterns as opposed to a narrow view of your design. That said, don't use code gen as a substitute for good object-oriented code, and don't love your code gen so much you ignore new technologies. For example, if you're in .NET and are writing code-gen for data access, you'd better have a good excuse for not using Linq to SQL or NHibernate. Similarly, Dynamic Data can help in many forms-on-data scenarios. So, my advice: spike new stuff and code gen as needed.
My 2cents on code gen is that it is also critical for use in refactoring. I have found that partial classes and a good file comparison utility (Araxis or BeyondCompare) are essential.
Keep your generated code in one file and the custom Tweaks you made for that class in another file.
This practice will allow you to make those comprehensive framework changes implemented quickly and will also help you move to a new paradigm while easily being able to save your custom logic.
CodeSmith FTW!
While build servers are great to make sure all your code compiles, it doesn't address the differences in signatures with your stored procs or the like. If you routinely run the code gen you can more easily identify when those changes occur. A unit test will tell you the SP is wrong, code gen will tell you how to make it right.