Selecting entries from a matrix without using a loop - matlab

I have two matrices A and B, both of which are Nx3 matrices.
I'm currently getting the maximum value and index for each row of matrix A using:
[maxA, idx] = max(A, [], 2)
idx(j) indicates which column contained the maximum for row j. Now I'd like to select those same positions from matrix B.
I've currently implemented this using a loop:
for j = 1:numel(idx)
maxB(j) = B(j, idx(j))
end
My current implementation is fast enough, although I prefer to avoid unneeded loops so is there a way to express this without a loop?

You can build a vector of linear indices (I expect B to be the same size as A):
vec_indices = sub2ind(size(A), 1:numel(idx), idx);
Then you can use that vector directly for lookup:
maxB = B(vec_indices)

You can construct the single dimension index into the matrix and get them that way. All multidimensional matrices in matlab can be addressed.
You can use
maxB = B(sub2ind([1:length(idx)]',idx(:)));

In one line:
maxB = B(A == max(A, [], 2) * ones(1, 3));
But this is not safe. It assumes unique values in every row of A.

Related

Matlab: How to extract specific cells from a 3D array using list of indices?

I have a source matrix A(m,n) for which I used "find" and now I have a list of desired indices [y,x].
I also have a 3D matrix with dimensions B(m,n,3).
I want to extract all the elements in B using the result from find.
So if find yields 4 pairs of results, I would like to have a 4x3 matrix with the contents of the Z dimension of B for the resulting indices.
I tried many things but keep failing:
A = rand(480,640);
[y,x] = find(A < 0.5);
o = B(y,x,:);
Requested 39024x39024x3 (34.0GB) array exceeds maximum array size preference.
I am clearly doing something wrong since B has dimensions (640,640,3).
With the way you are trying to index, matlab tries to index B with every combination of the elements in y and x resulting in a massive matrix. I've implemented a for loop to do what I think you are asking.
I would also note that in order to index across B the first two dimensions need to be the same size as A, Otherwise you will not be able to index B past the maximum row or column index in A.
A = rand(480,640);
B = rand(480,640,3);
[x,y] = find(A < 0.5);
o = zeros(size(x,1),1,3); % x and y are the same length so it doesn't matter
for i = 1:size(x,1)
o(i,1,:)= B(x(i),y(i),:);
end
o = reshape(o,size(x,1),3);
You can reshape B to a 2D matrix of size [m*n , 3] then use logical indexing to extract elements:
C = reshape(B, [], 3);
o = C(A<0.5, :);

Comparing matrices of different size in matlab and storing values that are close

I have two matrices A and B. A(:,1) corresponds to an x-coordinate, A(:,2) corresponds to a y-coordinate, and A(:,3) corresponds to a certain radius. All three values in a row describe the same circle. Now let's say...
A =
[1,4,3]
[8,8,7]
[3,6,3]
B =
[1,3,3]
[1, 92,3]
[4,57,8]
[5,62,1]
[3,4,6]
[9,8,7]
What I need is to be able to loop through matrix A and determine if there are any rows in matrix B that are "similar" as in the x value is within a range (-2,2) of the x value of A (Likewise with the y-coordinate and radius).If it satisfies all three of these conditions, it will be added to a new matrix with the values that were in A. So for example I would need the above data to return...
ans =
[1,4,3]
[8,8,7]
Please help and thank you in advance to anyone willing to take the time!
You can use ismembertol.
result = A(ismembertol(A,B,2,'ByRows',1,'DataScale',1),:)
Manual method
A = [1,4,3;
8,8,7;
3,6,3];
B = [1,3,3;
1,92,3;
4,57,8;
5,62,1;
3,4,6;
9,8,7]; % example matrices
t = 2; % desired threshold
m = any(all(abs(bsxfun(#minus, A, permute(B, [3 2 1])))<=t, 2), 3);
result = A(m,:);
The key is using permute to move the first dimension of B to the third dimension. Then bsxfun computes the element-wise differences for all pairs of rows in the original matrices. A row of A should be selected if all the absolute differences with respect to any column of B are less than the desired threshold t. The resulting variable m is a logical index which is used for selecting those rows.
Using pdist2 (Statistics and Machine Learning Toolbox)
m = any(pdist2(A, B, 'chebychev')<=t, 2);
result = A(m,:);
Ths pdist2 function with the chebychev option computes the maximum coordinate difference (Chebychev distance, or L∞ metric) between pairs of rows.
With for loop
It should work:
A = [1,4,3;
8,8,7;
3,6,3]
B = [1,3,3;
1,92,3;
4,57,8;
5,62,1;
3,4,6;
9,8,7]
index = 1;
for i = 1:size(A,1)
C = abs(B - A(i,:));
if any(max(C,[],2)<=2)
out(index,:) = A(i,:);
index = index + 1
end
end
For each row of A, computes the absolute difference between B and that row, then checks if there exists a row in which the maximum is less than 2.
Without for loop
ind = any(max(abs(B - permute(A,[3 2 1])),[],2)<=2);
out = A(ind(:),:);

Extract elements of matrix from a starting element and size

Sorry about the bad title, I'm struggling to word this question well. Basically what I want to do is extract elements from a 2d matrix, from row by row, taking out a number of elements (N) starting at a particular column (k). In for loops, this would look like.
A = magic(6);
k = [2,2,3,3,4,4]; % for example
N = 3;
for j = 1:length(A)
B(j,:) = A(j,k(j):k(j)+N-1);
end
I figure there must be a neater way to do it than that.
You could use bsxfun to create an array of indices to use. Then combine this with the row numbers and pass it to sub2ind.
inds = sub2ind(size(A), repmat(1:size(A, 1), 3, 1), bsxfun(#plus, k, (0:(N-1))')).';
B = A(inds);
Or alternately without sub2ind (but slightly more cryptic).
B = A(bsxfun(#plus, 1:size(A,1), ((bsxfun(#plus, k, (0:(N-1)).')-1) * size(A,1))).');
Here's one approach using bsxfun's masking capability and thus logical indexing -
C = (1:size(A,2))';
At = A.';
B = reshape(At(bsxfun(#ge,C,k) & bsxfun(#lt,C,k+N)),N,[]).';

Access a list of entries in MATLAB

I have a huge matrix MxN matrix, say, A=rand([M,N]); and an index vector with N integer values between 1 and M, say, RandomIndex = randi(M,[1,N]);.
Now I would like to generate a row vector with entries
result = [A(RandomIndex(1),1), A(RandomIndex(2),2), ..., A(RandomIndex(N),N)]
What would be an efficient way to do this? It should be a very cheap operation but all my implementations are slow. I don't think there is a notation in Matlab to do this directly, is there?
The fastest option so far is
indexFunction = #(r,c) A(r,c);
result = cell2mat(arrayfun(indexFunction,RandomIndex,1:N,'UniformOutput',false));
Is there a more efficient way?
Use sub2ind
A(sub2ind(size(A), RandomIndex, 1:N))
sub2ind will convert the row and column indices given by RandomIndex and 1:N to linear indices based on size(A) which you can then use to index A directly.
Another way to do this is to use RandomIndex and 1:N to return an NxN matrix and then take the diagonal of this with diag
diag(A(RandomIndex, 1:N)).'
Note: .' is used to convert the row vector returned by diag to a column vector.
M=10;N=50;
A=rand([M,N]);
RandomIndex = randi(M,[1,N]);
out = zeros(1,numel(RandomIndex));
for ii = 1:numel(RandomIndex)
out(ii)=A(RandomIndex(ii),ii);
end
Another approach would be to use sparse and logical indexing:
M = sparse(RandomIndex, 1:N, 1) == 1;
out = A(M);
The first line of code generates a logical matrix where there is only 1 true value set in each column. This is defined by each value of RandomIndex. We convert this to a logical matrix, then index into your matrix to obtain the final random vector.
Use your index directly.
M = 100;N=100;
A = rand(M,N);
% get a random index that can be as large as your matrix
% 10 rows by 1 column
idx = randi(numel(A), 10,1);
t = A(idx);

vectorizing a matlab / octave FOR loop

I'm a little confused as to how to vectorize this for loop see code below:
array1=[xfreq_orig,yamp_orig,yamp_inv,phase_orig] %frequency, amplitudes, phases to use
t_rebuilt=linspace(0,2*pi,44100)
aa_sig_rebuilt_L=zeros(1,length(t_rebuilt));
aa_sig_combined_L=zeros(1,length(t_rebuilt));
sig_full_L=zeros(1,length(t_rebuilt));
for kk=1:1:numel(xfreq_orig);
aa_sig_rebuilt_L = array1(kk, 2)*cos ((array1(kk,1))*t_rebuilt+(array1(kk, 4)));
aa_sig_combined_L = aa_sig_combined_L + aa_sig_rebuilt_L;
end
sig_full_L=(aa_sig_combined_L/max(abs(aa_sig_combined_L))*.8);
I came up with this as vectorization
Example:
array1=[10,.4,.34,2.32;12,.3,.45,.4];
t_rebuilt=linspace(0,2*pi,44100)
aa_sig_rebuilt_L = array1(kk, 2).*cos ((array1(kk,1)).*t_rebuilt+(array1(kk, 4)));
aa_sig_combined_L = sum(aa_sig_rebuilt_L);
What I don't know how to do is how to get the kk variable to access the rows incrementally
THanks.
One option is to use bsxfun as follows
a = array1;
t = t_rebuilt;
aa_sig_rebuilt_L = bsxfun(#times, a(:,2) , ...
cos( bsxfun(#plus, bsxfun(#times, a(:,1), t), a(:,4)) ));
aa_sig_combined_L = sum(aa_sig_rebuilt_L);
Bear in mind that this will use more memory than the version will a loop (it will use numel(xfreq_orig) times as much memory, as it computes every row of aa_sig_rebuilt_L before summing them, whereas the loop computes each row, adds it to the sum and then discards it).
The function bsxfun is used when you need to perform a binary operation between arrays of different sizes, e.g. a TxN matrix and a Tx1 vector. In this case it would perform the operation between each column of the matrix and the vector.
In your case you have a column vector and a row vector, and the operation is applied to the i'th element of the column vector and the j'th element of the row vector, to get the ij'th element of a matrix.